期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Mapping Network-Coordinated Stacked Gated Recurrent Units for Turbulence Prediction 被引量:1
1
作者 Zhiming Zhang Shangce Gao +2 位作者 mengchu zhou Mengtao Yan Shuyang Cao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1331-1341,共11页
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i... Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU. 展开更多
关键词 Convolutional neural network deep learning recurrent neural network turbulence prediction wind load predic-tion.
下载PDF
A survey on semantic communications:Technologies,solutions,applications and challenges
2
作者 Yating Liu Xiaojie Wang +3 位作者 Zhaolong Ning mengchu zhou Lei Guo Behrouz Jedari 《Digital Communications and Networks》 SCIE CSCD 2024年第3期528-545,共18页
Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networ... Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networks,beyond the theoretical capacity limit.Despite the extensive research on SC,there is a lack of comprehensive survey on technologies,solutions,applications,and challenges for SC.In this article,the development of SC is first reviewed and its characteristics,architecture,and advantages are summarized.Next,key technologies such as semantic extraction,semantic encoding,and semantic segmentation are discussed and their corresponding solutions in terms of efficiency,robustness,adaptability,and reliability are summarized.Applications of SC to UAV communication,remote image sensing and fusion,intelligent transportation,and healthcare are also presented and their strategies are summarized.Finally,some challenges and future research directions are presented to provide guidance for further research of SC. 展开更多
关键词 Semantic communication Semantic coding Semantic extraction Semantic communication framework Semantic communication applications
下载PDF
A Self-Adapting and Efficient Dandelion Algorithm and Its Application to Feature Selection for Credit Card Fraud Detection
3
作者 Honghao Zhu mengchu zhou +1 位作者 Yu Xie Aiiad Albeshri 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期377-390,共14页
A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all... A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods. 展开更多
关键词 Credit card fraud detection(CCFD) dandelion algorithm(DA) feature selection normal sowing operator
下载PDF
Evolution and Role of Optimizers in Training Deep Learning Models
4
作者 XiaoHao Wen mengchu zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2039-2042,共4页
TO perform well,deep learning(DL)models have to be trained well.Which optimizer should be adopted?We answer this question by discussing how optimizers have evolved from traditional methods like gradient descent to mor... TO perform well,deep learning(DL)models have to be trained well.Which optimizer should be adopted?We answer this question by discussing how optimizers have evolved from traditional methods like gradient descent to more advanced techniques to address challenges posed by highdimensional and non-convex problem space.Ongoing challenges include their hyperparameter sensitivity,balancing between convergence and generalization performance,and improving interpretability of optimization processes.Researchers continue to seek robust,efficient,and universally applicable optimizers to advance the field of DL across various domains. 展开更多
关键词 WHICH DEEP CONTINUE
下载PDF
Evolutionary Optimization Methods for High-Dimensional Expensive Problems:A Survey
5
作者 mengchu zhou Meiji Cui +3 位作者 Dian Xu Shuwei Zhu Ziyan Zhao Abdullah Abusorrah 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第5期1092-1105,共14页
Evolutionary computation is a rapidly evolving field and the related algorithms have been successfully used to solve various real-world optimization problems.The past decade has also witnessed their fast progress to s... Evolutionary computation is a rapidly evolving field and the related algorithms have been successfully used to solve various real-world optimization problems.The past decade has also witnessed their fast progress to solve a class of challenging optimization problems called high-dimensional expensive problems(HEPs).The evaluation of their objective fitness requires expensive resource due to their use of time-consuming physical experiments or computer simulations.Moreover,it is hard to traverse the huge search space within reasonable resource as problem dimension increases.Traditional evolutionary algorithms(EAs)tend to fail to solve HEPs competently because they need to conduct many such expensive evaluations before achieving satisfactory results.To reduce such evaluations,many novel surrogate-assisted algorithms emerge to cope with HEPs in recent years.Yet there lacks a thorough review of the state of the art in this specific and important area.This paper provides a comprehensive survey of these evolutionary algorithms for HEPs.We start with a brief introduction to the research status and the basic concepts of HEPs.Then,we present surrogate-assisted evolutionary algorithms for HEPs from four main aspects.We also give comparative results of some representative algorithms and application examples.Finally,we indicate open challenges and several promising directions to advance the progress in evolutionary optimization algorithms for HEPs. 展开更多
关键词 COMPUTER OPTIMIZATION EVOLUTIONARY
下载PDF
Bridge Bidding via Deep Reinforcement Learning and Belief Monte Carlo Search
6
作者 Zizhang Qiu Shouguang Wang +1 位作者 Dan You mengchu zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2111-2122,共12页
Contract Bridge,a four-player imperfect information game,comprises two phases:bidding and playing.While computer programs excel at playing,bidding presents a challenging aspect due to the need for information exchange... Contract Bridge,a four-player imperfect information game,comprises two phases:bidding and playing.While computer programs excel at playing,bidding presents a challenging aspect due to the need for information exchange with partners and interference with communication of opponents.In this work,we introduce a Bridge bidding agent that combines supervised learning,deep reinforcement learning via self-play,and a test-time search approach.Our experiments demonstrate that our agent outperforms WBridge5,a highly regarded computer Bridge software that has won multiple world championships,by a performance of 0.98 IMPs(international match points)per deal over 10000 deals,with a much cost-effective approach.The performance significantly surpasses previous state-of-the-art(0.85 IMPs per deal).Note 0.1 IMPs per deal is a significant improvement in Bridge bidding. 展开更多
关键词 Contract Bridge reinforcement learning SEARCH
下载PDF
Analysis of Evolutionary Social Media Activities: Pre-Vaccine and Post-Vaccine Emergency Use 被引量:2
7
作者 Haoyue Liu mengchu zhou +2 位作者 Xiaoyu Lu Abdullah Abusorrah Yusuf Al-Turki 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1090-1092,共3页
Dear Editor,In this letter,we analyze the public discourse sentiments over time and seek to understand the salient patterns around COVID-19 vaccines and vaccination from social media data.Globally,more than 373 millio... Dear Editor,In this letter,we analyze the public discourse sentiments over time and seek to understand the salient patterns around COVID-19 vaccines and vaccination from social media data.Globally,more than 373 million people have been diagnosed with COVID-19 and 5.66 million have died from this disease by 2022.It continues to have a negative impact on human daily life and the global economic development till now,due to the lack of effective treatment of COVID-19 induced issues and prevention of transmission methods. 展开更多
关键词 DISCOURSE methods PREVENTION
下载PDF
Dynamic Evolutionary Game-based Modeling,Analysis and Performance Enhancement of Blockchain Channels 被引量:1
8
作者 PeiYun Zhang mengchu zhou +1 位作者 ChenXi Li Abdullah Abusorrah 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期188-202,共15页
The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations.When transactions are transmitted through the channels created by nodes,the nodes need to ... The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations.When transactions are transmitted through the channels created by nodes,the nodes need to cooperate with each other.If one party refuses to do so,the channel is unstable.A stable channel is thus required.Because nodes may show uncooperative behavior,they may have a negative impact on the stability of such channels.In order to address this issue,this work proposes a dynamic evolutionary game model based on node behavior.This model considers various defense strategies'cost and attack success ratio under them.Nodes can dynamically adjust their strategies according to the behavior of attackers to achieve their effective defense.The equilibrium stability of the proposed model can be achieved.The proposed model can be applied to general channel networks.It is compared with two state-of-the-art blockchain channels:Lightning network and Spirit channels.The experimental results show that the proposed model can be used to improve a channel's stability and keep it in a good cooperative stable state.Thus its use enables a blockchain to enjoy higher transaction success ratio and lower transaction transmission delay than the use of its two peers. 展开更多
关键词 Blockchain channel network evolutionary game malicious behavior secure computing stability analysis
下载PDF
Cryptocurrency Transaction Network Embedding From Static and Dynamic Perspectives: An Overview 被引量:1
9
作者 Yue zhou Xin Luo mengchu zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1105-1121,共17页
Cryptocurrency, as a typical application scene of blockchain, has attracted broad interests from both industrial and academic communities. With its rapid development, the cryptocurrency transaction network embedding(C... Cryptocurrency, as a typical application scene of blockchain, has attracted broad interests from both industrial and academic communities. With its rapid development, the cryptocurrency transaction network embedding(CTNE) has become a hot topic. It embeds transaction nodes into low-dimensional feature space while effectively maintaining a network structure,thereby discovering desired patterns demonstrating involved users' normal and abnormal behaviors. Based on a wide investigation into the state-of-the-art CTNE, this survey has made the following efforts: 1) categorizing recent progress of CTNE methods, 2) summarizing the publicly available cryptocurrency transaction network datasets, 3) evaluating several widely-adopted methods to show their performance in several typical evaluation protocols, and 4) discussing the future trends of CTNE. By doing so, it strives to provide a systematic and comprehensive overview of existing CTNE methods from static to dynamic perspectives,thereby promoting further research into this emerging and important field. 展开更多
关键词 Big data analysis cryptocurrency transaction network embedding(CTNE) dynamic network network embedding network representation static network
下载PDF
A Length-Adaptive Non-Dominated Sorting Genetic Algorithm for Bi-Objective High-Dimensional Feature Selection
10
作者 Yanlu Gong Junhai zhou +2 位作者 Quanwang Wu mengchu zhou Junhao Wen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第9期1834-1844,共11页
As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected featu... As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected features.Evolutionary computing(EC)is promising for FS owing to its powerful search capability.However,in traditional EC-based methods,feature subsets are represented via a length-fixed individual encoding.It is ineffective for high-dimensional data,because it results in a huge search space and prohibitive training time.This work proposes a length-adaptive non-dominated sorting genetic algorithm(LA-NSGA)with a length-variable individual encoding and a length-adaptive evolution mechanism for bi-objective highdimensional FS.In LA-NSGA,an initialization method based on correlation and redundancy is devised to initialize individuals of diverse lengths,and a Pareto dominance-based length change operator is introduced to guide individuals to explore in promising search space adaptively.Moreover,a dominance-based local search method is employed for further improvement.The experimental results based on 12 high-dimensional gene datasets show that the Pareto front of feature subsets produced by LA-NSGA is superior to those of existing algorithms. 展开更多
关键词 Bi-objective optimization feature selection(FS) genetic algorithm high-dimensional data length-adaptive
下载PDF
A Survey of Cyber Attacks on Cyber Physical Systems:Recent Advances and Challenges 被引量:17
11
作者 Wenli Duo mengchu zhou Abdullah Abusorrah 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第5期784-800,共17页
A cyber physical system(CPS)is a complex system that integrates sensing,computation,control and networking into physical processes and objects over Internet.It plays a key role in modern industry since it connects phy... A cyber physical system(CPS)is a complex system that integrates sensing,computation,control and networking into physical processes and objects over Internet.It plays a key role in modern industry since it connects physical and cyber worlds.In order to meet ever-changing industrial requirements,its structures and functions are constantly improved.Meanwhile,new security issues have arisen.A ubiquitous problem is the fact that cyber attacks can cause significant damage to industrial systems,and thus has gained increasing attention from researchers and practitioners.This paper presents a survey of state-of-the-art results of cyber attacks on cyber physical systems.First,as typical system models are employed to study these systems,time-driven and event-driven systems are reviewed.Then,recent advances on three types of attacks,i.e.,those on availability,integrity,and confidentiality are discussed.In particular,the detailed studies on availability and integrity attacks are introduced from the perspective of attackers and defenders.Namely,both attack and defense strategies are discussed based on different system models.Some challenges and open issues are indicated to guide future research and inspire the further exploration of this increasingly important area. 展开更多
关键词 Attack detection attack strategy cyber attack cyber physical system(CPS) secure control
下载PDF
An Online Fault Detection Model and Strategies Based on SVM-Grid in Clouds 被引量:23
12
作者 PeiYun Zhang Sheng Shu mengchu zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期445-456,共12页
Online fault detection is one of the key technologies to improve the performance of cloud systems. The current data of cloud systems is to be monitored, collected and used to reflect their state. Its use can potential... Online fault detection is one of the key technologies to improve the performance of cloud systems. The current data of cloud systems is to be monitored, collected and used to reflect their state. Its use can potentially help cloud managers take some timely measures before fault occurrence in clouds. Because of the complex structure and dynamic change characteristics of the clouds, existing fault detection methods suffer from the problems of low efficiency and low accuracy. In order to solve them, this work proposes an online detection model based on asystematic parameter-search method called SVM-Grid, whose construction is based on a support vector machine(SVM). SVM-Grid is used to optimize parameters in SVM. Proper attributes of a cloud system's running data are selected by using Pearson correlation and principal component analysis for the model. Strategies of predicting cloud faults and updating fault sample databases are proposed to optimize the model and improve its performance.In comparison with some representative existing methods, the proposed model can achieve more efficient and accurate fault detection for cloud systems. 展开更多
关键词 Index Terms-Cloud computing fault detection support vectormachine (SVM) grid.
下载PDF
Modified Cuckoo Search Algorithm to Solve Economic Power Dispatch Optimization Problems 被引量:16
13
作者 Jian Zhao Shixin Liu +2 位作者 mengchu zhou Xiwang Guo Liang Qi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第4期794-806,共13页
A modified cuckoo search(CS) algorithm is proposed to solve economic dispatch(ED) problems that have nonconvex, non-continuous or non-linear solution spaces considering valve-point effects, prohibited operating zones,... A modified cuckoo search(CS) algorithm is proposed to solve economic dispatch(ED) problems that have nonconvex, non-continuous or non-linear solution spaces considering valve-point effects, prohibited operating zones, transmission losses and ramp rate limits. Comparing with the traditional cuckoo search algorithm, we propose a self-adaptive step size and some neighbor-study strategies to enhance search performance.Moreover, an improved lambda iteration strategy is used to generate new solutions. To show the superiority of the proposed algorithm over several classic algorithms, four systems with different benchmarks are tested. The results show its efficiency to solve economic dispatch problems, especially for large-scale systems. 展开更多
关键词 Cuckoo search(CS) economic dispatch(ED) prohibited operating zones ramp rate limits valve-point effects
下载PDF
A Multi-Layered Gravitational Search Algorithm for Function Optimization and Real-World Problems 被引量:10
14
作者 Yirui Wang Shangce Gao +1 位作者 mengchu zhou Yang Yu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期94-109,共16页
A gravitational search algorithm(GSA)uses gravitational force among individuals to evolve population.Though GSA is an effective population-based algorithm,it exhibits low search performance and premature convergence.T... A gravitational search algorithm(GSA)uses gravitational force among individuals to evolve population.Though GSA is an effective population-based algorithm,it exhibits low search performance and premature convergence.To ameliorate these issues,this work proposes a multi-layered GSA called MLGSA.Inspired by the two-layered structure of GSA,four layers consisting of population,iteration-best,personal-best and global-best layers are constructed.Hierarchical interactions among four layers are dynamically implemented in different search stages to greatly improve both exploration and exploitation abilities of population.Performance comparison between MLGSA and nine existing GSA variants on twenty-nine CEC2017 test functions with low,medium and high dimensions demonstrates that MLGSA is the most competitive one.It is also compared with four particle swarm optimization variants to verify its excellent performance.Moreover,the analysis of hierarchical interactions is discussed to illustrate the influence of a complete hierarchy on its performance.The relationship between its population diversity and fitness diversity is analyzed to clarify its search performance.Its computational complexity is given to show its efficiency.Finally,it is applied to twenty-two CEC2011 real-world optimization problems to show its practicality. 展开更多
关键词 Artificial intelligence exploration and exploitation gravitational search algorithm hierarchical interaction HIERARCHY machine learning population structure
下载PDF
Residual-driven Fuzzy C-Means Clustering for Image Segmentation 被引量:8
15
作者 Cong Wang Witold Pedrycz +1 位作者 ZhiWu Li mengchu zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期876-889,共14页
In this paper,we elaborate on residual-driven Fuzzy C-Means(FCM)for image segmentation,which is the first approach that realizes accurate residual(noise/outliers)estimation and enables noise-free image to participate ... In this paper,we elaborate on residual-driven Fuzzy C-Means(FCM)for image segmentation,which is the first approach that realizes accurate residual(noise/outliers)estimation and enables noise-free image to participate in clustering.We propose a residual-driven FCM framework by integrating into FCM a residual-related regularization term derived from the distribution characteristic of different types of noise.Built on this framework,a weighted?2-norm regularization term is presented by weighting mixed noise distribution,thus resulting in a universal residual-driven FCM algorithm in presence of mixed or unknown noise.Besides,with the constraint of spatial information,the residual estimation becomes more reliable than that only considering an observed image itself.Supporting experiments on synthetic,medical,and real-world images are conducted.The results demonstrate the superior effectiveness and efficiency of the proposed algorithm over its peers. 展开更多
关键词 Fuzzy C-Means image segmentation mixed or unknown noise residual-driven weighted regularization
下载PDF
Dual-Objective Mixed Integer Linear Program and Memetic Algorithm for an Industrial Group Scheduling Problem 被引量:7
16
作者 Ziyan Zhao Shixin Liu +1 位作者 mengchu zhou Abdullah Abusorrah 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第6期1199-1209,共11页
Group scheduling problems have attracted much attention owing to their many practical applications.This work proposes a new bi-objective serial-batch group scheduling problem considering the constraints of sequence-de... Group scheduling problems have attracted much attention owing to their many practical applications.This work proposes a new bi-objective serial-batch group scheduling problem considering the constraints of sequence-dependent setup time,release time,and due time.It is originated from an important industrial process,i.e.,wire rod and bar rolling process in steel production systems.Two objective functions,i.e.,the number of late jobs and total setup time,are minimized.A mixed integer linear program is established to describe the problem.To obtain its Pareto solutions,we present a memetic algorithm that integrates a population-based nondominated sorting genetic algorithm II and two single-solution-based improvement methods,i.e.,an insertion-based local search and an iterated greedy algorithm.The computational results on extensive industrial data with the scale of a one-week schedule show that the proposed algorithm has great performance in solving the concerned problem and outperforms its peers.Its high accuracy and efficiency imply its great potential to be applied to solve industrial-size group scheduling problems. 展开更多
关键词 Insertion-based local search iterated greedy algorithm machine learning memetic algorithm nondominated sorting genetic algorithm II(NSGA-II) production scheduling
下载PDF
An Embedded Feature Selection Method for Imbalanced Data Classification 被引量:14
17
作者 Haoyue Liu mengchu zhou Qing Liu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第3期703-715,共13页
Imbalanced data is one type of datasets that are frequently found in real-world applications, e.g., fraud detection and cancer diagnosis. For this type of datasets, improving the accuracy to identify their minority cl... Imbalanced data is one type of datasets that are frequently found in real-world applications, e.g., fraud detection and cancer diagnosis. For this type of datasets, improving the accuracy to identify their minority class is a critically important issue.Feature selection is one method to address this issue. An effective feature selection method can choose a subset of features that favor in the accurate determination of the minority class. A decision tree is a classifier that can be built up by using different splitting criteria. Its advantage is the ease of detecting which feature is used as a splitting node. Thus, it is possible to use a decision tree splitting criterion as a feature selection method. In this paper, an embedded feature selection method using our proposed weighted Gini index(WGI) is proposed. Its comparison results with Chi2, F-statistic and Gini index feature selection methods show that F-statistic and Chi2 reach the best performance when only a few features are selected. As the number of selected features increases, our proposed method has the highest probability of achieving the best performance. The area under a receiver operating characteristic curve(ROC AUC) and F-measure are used as evaluation criteria. Experimental results with two datasets show that ROC AUC performance can be high, even if only a few features are selected and used, and only changes slightly as more and more features are selected. However, the performance of Fmeasure achieves excellent performance only if 20% or more of features are chosen. The results are helpful for practitioners to select a proper feature selection method when facing a practical problem. 展开更多
关键词 Classification and regression TREE FEATURE selection imbalanced data WEIGHTED GINI INDEX (WGI)
下载PDF
Toward Cloud Computing QoS Architecture:Analysis of Cloud Systems and Cloud Services 被引量:20
18
作者 Mohammad Hossein Ghahramani mengchu zhou Chi Tin Hon 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2017年第1期6-18,共13页
Cloud can be defined as a new computing paradigm that provides scalable, on-demand, and virtualized resources for users. In this style of computing, users can access a shared pool of computing resources which are prov... Cloud can be defined as a new computing paradigm that provides scalable, on-demand, and virtualized resources for users. In this style of computing, users can access a shared pool of computing resources which are provisioned with minimal management efforts of users. Yet there are some obstacles and concerns about the use of clouds. Guaranteeing quality of service QoS by service providers can be regarded as one of the main concerns for companies tending to use it. Service provisioning in clouds is based on service level agreements representing a contract negotiated between users and providers. According to this contract, if a provider cannot satisfy its agreed application requirements, it should pay penalties as compensation. In this paper, we intend to carry out a comprehensive survey on the models proposed in literature with respect to the implementation principles to address the QoS guarantee issue. © 2014 Chinese Association of Automation. 展开更多
关键词 Cloud computing Distributed computer systems System of systems Systems engineering Telecommunication services Web services
下载PDF
Efficient and High-quality Recommendations via Momentum-incorporated Parallel Stochastic Gradient Descent-Based Learning 被引量:5
19
作者 Xin Luo Wen Qin +2 位作者 Ani Dong Khaled Sedraoui mengchu zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期402-411,共10页
A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and... A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and scalability when handling large-scale industrial problems.Aiming at addressing this issue,this study proposes a momentum-incorporated parallel stochastic gradient descent(MPSGD)algorithm,whose main idea is two-fold:a)implementing parallelization via a novel datasplitting strategy,and b)accelerating convergence rate by integrating momentum effects into its training process.With it,an MPSGD-based latent factor(MLF)model is achieved,which is capable of performing efficient and high-quality recommendations.Experimental results on four high-dimensional and sparse matrices generated by industrial RS indicate that owing to an MPSGD algorithm,an MLF model outperforms the existing state-of-the-art ones in both computational efficiency and scalability. 展开更多
关键词 Big data industrial application industrial data latent factor analysis machine learning parallel algorithm recommender system(RS) stochastic gradient descent(SGD)
下载PDF
A Survey of Multi-robot Regular and Adversarial Patrolling 被引量:14
20
作者 Li Huang mengchu zhou +1 位作者 Kuangrong Hao Edwin Hou 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第4期894-903,共10页
Multi-robot systems can be applied to patrol a concerned environment for security purposes.According to different goals,this work reviews the existing researches in a multi-robot patrolling field from the perspectives... Multi-robot systems can be applied to patrol a concerned environment for security purposes.According to different goals,this work reviews the existing researches in a multi-robot patrolling field from the perspectives of regular and adversarial patrolling.Regular patrolling requires robots to visit important locations as frequently as possible and a series of deterministic strategies are proposed,while adversarial one focuses on unpredictable robots’moving patterns to maximize adversary detection probability.Under each category,a systematic survey is done including problem statements and modeling,patrolling objectives and evaluation criteria,and representative patrolling strategies and approaches.Existing problems and open questions are presented accordingly. 展开更多
关键词 MULTI-ROBOT systems REGULAR patrolling adversarial patrolling COORDINATION METHODS SURVEILLANCE
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部