With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW)...With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW),lower power and lower latency[1−3].The optical I/O leverages silicon photonic(SiPh)technology to enable high-density large-scale integrated photonics.展开更多
Heterogeneous pressure-carrying medium was employed to establish a differentiated pressure field on sheet metal in flexible die forming process in this work,which aimed at matching the non-symmetric shape of target co...Heterogeneous pressure-carrying medium was employed to establish a differentiated pressure field on sheet metal in flexible die forming process in this work,which aimed at matching the non-symmetric shape of target component and improving metal inflow to avoid local tensile instability.Specifically,metal inflow corresponding to the differentiated pressure field was analytically evaluated.Forming of a typical non-symmetric shell component was experimentally and numerically studied based on the proposed method.Compared with forming processes based on the uniform pressure,difference of metal inflow in two sides of the non-symmetric component increased from 2.16 mm to 3.36 mm and metal inflow in critical region increased by 11.9%when differentiated pressure field(taking heterogeneous elastomer#4–3 for example)was employed.The resultant maximum thinning ratio decreased by 4.2% and the uniformity of shell thickness increased by 16.9%.With the decrease of Shore hardness of elastomer in the formed region,stress path in the ready-to-form region transferred towards the bi-axial tension stress state,i.e.,stress ratio(a)increased.And,stress triaxiality(η)in characteristic regions were regulated appropriately,which decreased the risk of tensile instability.It was attributed to the decreased normal pressure and frictional resistance at sheet/elastomer interface in the formed region.展开更多
A 4×112 Gb/s hybrid-integrated optical receiver is demonstrated based on the silicon-photonic vertical p-i-n photodetector and silicon–germanium transimpedance amplifier.We propose a photonic-electronic co-desig...A 4×112 Gb/s hybrid-integrated optical receiver is demonstrated based on the silicon-photonic vertical p-i-n photodetector and silicon–germanium transimpedance amplifier.We propose a photonic-electronic co-design technique to optimize both the device-level and system-level performance,based on the end-to-end equivalent circuit model of the receiver.Continuous-time linear equalization and shunt peaking are employed to enhance the frequency response.Experimental results reveal that the optical-to-electrical 3-dB bandwidth of the receiver is 48 GHz.Clear open NRZ eye diagrams at56 Gb/s and PAM-4 eye diagrams at 112 Gb/s are achieved without an equalizer in the oscilloscope.The measured bit error rates for 56 Gb/s in NRZ and 112 Gb/s in PAM-4 reach 1×10^(-12)and 2.4×10^(-4)(KP4-FEC:forward error correction)thresholds under-4 dBm input power,respectively.Furthermore,the proposed receiver boasts a power consumption of approximately2.2 pJ/bit,indicating an energy efficient solution for data center traffic growth.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61925505,92373209 and 62235017).
文摘With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW),lower power and lower latency[1−3].The optical I/O leverages silicon photonic(SiPh)technology to enable high-density large-scale integrated photonics.
基金supported by the National Natural Science Foundation of China(No.52275329,No.51905156,and No.51805309)Natural Science Foundation of Henan(No.232300421059)the fellowship of China Postdoctoral Science Foundation(No.2020M672221)。
文摘Heterogeneous pressure-carrying medium was employed to establish a differentiated pressure field on sheet metal in flexible die forming process in this work,which aimed at matching the non-symmetric shape of target component and improving metal inflow to avoid local tensile instability.Specifically,metal inflow corresponding to the differentiated pressure field was analytically evaluated.Forming of a typical non-symmetric shell component was experimentally and numerically studied based on the proposed method.Compared with forming processes based on the uniform pressure,difference of metal inflow in two sides of the non-symmetric component increased from 2.16 mm to 3.36 mm and metal inflow in critical region increased by 11.9%when differentiated pressure field(taking heterogeneous elastomer#4–3 for example)was employed.The resultant maximum thinning ratio decreased by 4.2% and the uniformity of shell thickness increased by 16.9%.With the decrease of Shore hardness of elastomer in the formed region,stress path in the ready-to-form region transferred towards the bi-axial tension stress state,i.e.,stress ratio(a)increased.And,stress triaxiality(η)in characteristic regions were regulated appropriately,which decreased the risk of tensile instability.It was attributed to the decreased normal pressure and frictional resistance at sheet/elastomer interface in the formed region.
基金supported in part by the National Natural Science Foundation of China(NSFC)(Nos.62235017 and 62235015)the Young Elite Scientist Sponsorship Program(No.YESS20220688)the National Key Research and Development Program of China(No.2020YFB2205700)。
文摘A 4×112 Gb/s hybrid-integrated optical receiver is demonstrated based on the silicon-photonic vertical p-i-n photodetector and silicon–germanium transimpedance amplifier.We propose a photonic-electronic co-design technique to optimize both the device-level and system-level performance,based on the end-to-end equivalent circuit model of the receiver.Continuous-time linear equalization and shunt peaking are employed to enhance the frequency response.Experimental results reveal that the optical-to-electrical 3-dB bandwidth of the receiver is 48 GHz.Clear open NRZ eye diagrams at56 Gb/s and PAM-4 eye diagrams at 112 Gb/s are achieved without an equalizer in the oscilloscope.The measured bit error rates for 56 Gb/s in NRZ and 112 Gb/s in PAM-4 reach 1×10^(-12)and 2.4×10^(-4)(KP4-FEC:forward error correction)thresholds under-4 dBm input power,respectively.Furthermore,the proposed receiver boasts a power consumption of approximately2.2 pJ/bit,indicating an energy efficient solution for data center traffic growth.