Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy togeth...Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.展开更多
Chirality hold broad applications in life sciences,quantum devices,and various other areas.Traditionally,molecular chirality can be characterized by using steady-state circular dichroism spectroscopy.However,the techn...Chirality hold broad applications in life sciences,quantum devices,and various other areas.Traditionally,molecular chirality can be characterized by using steady-state circular dichroism spectroscopy.However,the techniques that can characterize excited state chirality are progressively capturing the public interest as it can provide the dynamic information for chirality generation and transfer.In this review,we focus on the theoretical background and the developmental history of femtosecond time-resolved circular dichroism spectroscopy(TRCD)techniques around the world.Additionally,we provide examples to showcase the utility of these techniques in the analysis of the dynamical molecular chemical structures,the investigation of molecular chirality generation,and the detection of electron spin dynamics in semiconductor quantum dots.展开更多
In this letter, excited state dynamics of TPZ2, a centrosymmetric PRODAN dye, has been studied by using several time-resolved spectroscopy techniques. Fluorescence quantum yield of TPZ2 is found to be 0.50 in both ace...In this letter, excited state dynamics of TPZ2, a centrosymmetric PRODAN dye, has been studied by using several time-resolved spectroscopy techniques. Fluorescence quantum yield of TPZ2 is found to be 0.50 in both acetonitrile and ethanol solution. The radiative decay rate of the excited state of TPZ2 is determined to be 2.0×10^8 s^-1. Meanwhile, highly efficient triplet state and singlet oxygen generation have been observed in TPZ2 and the intersystem crossing(ISC) rate is determined to be 2.0×10^8s^-1. The almost identical ISC and non-radiative decay rates indicate that ISC is the only non-radiative decay pathway in TPZ2. Thus, dual excited state(S1) deactivation mechanism(50/50, fluorescence/ISC) of TPZ2 is proposed.Because of this unique property, TPZ2 has the potential to be used as biocompatible imaging and photodynamic therapy agent in the same time.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2023YFF0719200 and 2022YFA1404004)the National Natural Science Foundation of China(Grant Nos.62322115,61988102,61975110,62335012,and 12074248)+3 种基金111 Project(Grant No.D18014)the Key Project supported by Science and Technology Commission Shanghai Municipality(Grant No.YDZX20193100004960)Science and Technology Commission of Shanghai Municipality(Grant Nos.22JC1400200 and 21S31907400)General Administration of Customs People’s Republic of China(Grant No.2019HK006)。
文摘Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.
基金funded by the National Natural Science Foundation of China(No.92156024and No.92356307 to Jinquan Chen)Menghui Jia thanks the Materials Characterization Center and the Office of Laboratory and Equipment of East China Normal University for funding support(ECNUETR2023-13).
文摘Chirality hold broad applications in life sciences,quantum devices,and various other areas.Traditionally,molecular chirality can be characterized by using steady-state circular dichroism spectroscopy.However,the techniques that can characterize excited state chirality are progressively capturing the public interest as it can provide the dynamic information for chirality generation and transfer.In this review,we focus on the theoretical background and the developmental history of femtosecond time-resolved circular dichroism spectroscopy(TRCD)techniques around the world.Additionally,we provide examples to showcase the utility of these techniques in the analysis of the dynamical molecular chemical structures,the investigation of molecular chirality generation,and the detection of electron spin dynamics in semiconductor quantum dots.
基金funded by the National Natural Science Foundation of China (No. 11674101)
文摘In this letter, excited state dynamics of TPZ2, a centrosymmetric PRODAN dye, has been studied by using several time-resolved spectroscopy techniques. Fluorescence quantum yield of TPZ2 is found to be 0.50 in both acetonitrile and ethanol solution. The radiative decay rate of the excited state of TPZ2 is determined to be 2.0×10^8 s^-1. Meanwhile, highly efficient triplet state and singlet oxygen generation have been observed in TPZ2 and the intersystem crossing(ISC) rate is determined to be 2.0×10^8s^-1. The almost identical ISC and non-radiative decay rates indicate that ISC is the only non-radiative decay pathway in TPZ2. Thus, dual excited state(S1) deactivation mechanism(50/50, fluorescence/ISC) of TPZ2 is proposed.Because of this unique property, TPZ2 has the potential to be used as biocompatible imaging and photodynamic therapy agent in the same time.