The outstanding advantages of lightweight and flexibility enable flexible perovskite solar cells(PSCs)to have great application potential in mobile energy devices.Due to the low cost,low-temperature processibility,and...The outstanding advantages of lightweight and flexibility enable flexible perovskite solar cells(PSCs)to have great application potential in mobile energy devices.Due to the low cost,low-temperature processibility,and high electron mobility,SnO_(2) nanocrystals have been widely employed as the electron transport layer in flexible PSCs.To prepare high-quality SnO_(2) layers,a monodispersed nanocrystal solution is normally used.However,the SnO_(2) nanocrystals can easily aggregate,especially after long periods of storage.Herein,we develop a green and cost-effective strategy for the synthesis of high-quality SnO_(2) nanocrystals at low temperatures by introducing small molecules of glycerol,obtaining a stable and well-dispersed SnO_(2)-nanocrystal isopropanol dispersion successfully.Due to the enhanced dispersity and super wettability of this alcohol-based SnO_(2)-nanocrystal solution,large-area smooth and dense SnO_(2) films are easily deposited on the plastic conductive substrate.Furthermore,this contributes to effective charge transfer and suppressed non-radiative recombination at the interface between the SnO_(2) and perovskite layers.As a result,a greatly enhanced power conversion efficiency(PCE)of 21.8%from 19.2%is achieved for small-area flexible PSCs.A large-area 5 cm×5 cm flexible perovskite solar mini-module with a champion PCE of 16.5%and good stability is also demonstrated via this glycerol-modified SnO_(2)-nanocrystal isopropanol dispersion approach.展开更多
Erratum to Nano Research,2024,17(4):2704-2711 https://doi.org/10.1007/s12274-023-6115-y(1)In the article,the table of contents(TOC)image was unfortunately mispresented.
Conductive Ti_(3)C_(2)T_(x)MXenes have been widely investigated for the construction of flexible and highly-sensitive pressure sensors.Although the inevitable oxidation of solution-processed MXene has been recognized,...Conductive Ti_(3)C_(2)T_(x)MXenes have been widely investigated for the construction of flexible and highly-sensitive pressure sensors.Although the inevitable oxidation of solution-processed MXene has been recognized,the effect of the irreversible oxidation of MXene on its electrical conductivity and sensing properties is yet to be understood.Herein,we construct a highly-sensitive and degradable piezoresistive pressure sensor by coating Ti_(3)C_(2)T_(x)MXene flakes with different degrees of in situ oxidation onto paper substrates using the dipping-drying method.In situ oxidation can tune the intrinsic resistance and expand the interlayer distance of MXene nanosheets.The partially oxidized MXene-based piezoresistive pressure sensor exhibits a high sensitivity of 28.43 kPa^(-1),which is greater than those of pristine MXene,over-oxidized MXene,and state-of-the-art paper-based pressure sensors.Additionally,these sensors exhibit a short response time of 98.3 ms,good durability over 5000 measurement cycles,and a low force detection limit of 0.8 Pa.Moreover,MXene-based sensing elements are easily degraded and environmentally friendly.The MXene-based pressure sensor shows promise for practical applications in tracking body movements,sports coaching,remote health monitoring,and human–computer interactions.展开更多
基金supported by the National Key Research and Development Plan(No.2019YFE0107200)the National Natural Science Foundation of China(Nos.22279099,52202292,and 52172230)+3 种基金Guangdong Basic and Applied Basic Research Fund(No.2021B1515120003)the NSF of Hubei Province(No.2021CFB051)the Fundamental Research Funds for the Central Universities(No.WUT:2023IVA074)the National Research Foundation of Korea(NRF)(No.2019K1A3A1A61091345).
文摘The outstanding advantages of lightweight and flexibility enable flexible perovskite solar cells(PSCs)to have great application potential in mobile energy devices.Due to the low cost,low-temperature processibility,and high electron mobility,SnO_(2) nanocrystals have been widely employed as the electron transport layer in flexible PSCs.To prepare high-quality SnO_(2) layers,a monodispersed nanocrystal solution is normally used.However,the SnO_(2) nanocrystals can easily aggregate,especially after long periods of storage.Herein,we develop a green and cost-effective strategy for the synthesis of high-quality SnO_(2) nanocrystals at low temperatures by introducing small molecules of glycerol,obtaining a stable and well-dispersed SnO_(2)-nanocrystal isopropanol dispersion successfully.Due to the enhanced dispersity and super wettability of this alcohol-based SnO_(2)-nanocrystal solution,large-area smooth and dense SnO_(2) films are easily deposited on the plastic conductive substrate.Furthermore,this contributes to effective charge transfer and suppressed non-radiative recombination at the interface between the SnO_(2) and perovskite layers.As a result,a greatly enhanced power conversion efficiency(PCE)of 21.8%from 19.2%is achieved for small-area flexible PSCs.A large-area 5 cm×5 cm flexible perovskite solar mini-module with a champion PCE of 16.5%and good stability is also demonstrated via this glycerol-modified SnO_(2)-nanocrystal isopropanol dispersion approach.
文摘Erratum to Nano Research,2024,17(4):2704-2711 https://doi.org/10.1007/s12274-023-6115-y(1)In the article,the table of contents(TOC)image was unfortunately mispresented.
基金National Natural Science Foundation of China,Grant/Award Numbers:11904091,52072280,52102141NSF of Hubei Province,Grant/Award Number:2021CFB051Basic Science Center Program of NSFC,Grant/Award Number:51788104。
文摘Conductive Ti_(3)C_(2)T_(x)MXenes have been widely investigated for the construction of flexible and highly-sensitive pressure sensors.Although the inevitable oxidation of solution-processed MXene has been recognized,the effect of the irreversible oxidation of MXene on its electrical conductivity and sensing properties is yet to be understood.Herein,we construct a highly-sensitive and degradable piezoresistive pressure sensor by coating Ti_(3)C_(2)T_(x)MXene flakes with different degrees of in situ oxidation onto paper substrates using the dipping-drying method.In situ oxidation can tune the intrinsic resistance and expand the interlayer distance of MXene nanosheets.The partially oxidized MXene-based piezoresistive pressure sensor exhibits a high sensitivity of 28.43 kPa^(-1),which is greater than those of pristine MXene,over-oxidized MXene,and state-of-the-art paper-based pressure sensors.Additionally,these sensors exhibit a short response time of 98.3 ms,good durability over 5000 measurement cycles,and a low force detection limit of 0.8 Pa.Moreover,MXene-based sensing elements are easily degraded and environmentally friendly.The MXene-based pressure sensor shows promise for practical applications in tracking body movements,sports coaching,remote health monitoring,and human–computer interactions.