期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Nickel-based superalloy architectures with surface mechanical attrition treatment: Compressive properties and collapse behaviour
1
作者 Lizi Cheng Xiaofeng Zhang +7 位作者 Jiacheng Xu Temitope Olumide Olugbade Gan Li Dongdong Dong Fucong Lyu Haojie Kong mengke huo Jian Lu 《Nano Materials Science》 EI CAS CSCD 2024年第5期587-595,共9页
Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical propertie... Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical properties and the underlying mechanisms of additively manufactured nickel–chromium superalloy(IN625)microlattices after surface mechanical attrition treatment(SMAT).Our results demonstrated that SMAT increased the yielding strength of these microlattices by more than 64.71%and also triggered a transition in their mechanical behaviour.Two primary failure modes were distinguished:weak global deformation,and layer-by-layer collapse,with the latter enhanced by SMAT.The significantly improved mechanical performance was attributable to the ultrafine and hard graded-nanograin layer induced by SMAT,which effectively leveraged the material and structural effects.These results were further validated by finite element analysis.This work provides insight into collapse behaviour and should facilitate the design of ultralight yet buckling-resistant cellular materials. 展开更多
关键词 Architected materials Selective laser melting Surface mechanical attrition treatment Structural analysis Ductile alloy
下载PDF
Nacre-liked material with tough and post-tunable mechanical properties
2
作者 Zhengyi Mao mengke huo +7 位作者 Fucong Lyu Yongsen Zhou Yu Bu Lei Wan Lulu Pan Jie Pan Hui Liu Jian Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第19期172-179,共8页
Biomaterials,often imparted time-dependent mechanical properties,which are promising in fields rang-ing from sensors to robotics.Here,a facile method was proposed to fabricate post-tunable mechanical properties compos... Biomaterials,often imparted time-dependent mechanical properties,which are promising in fields rang-ing from sensors to robotics.Here,a facile method was proposed to fabricate post-tunable mechanical properties composites based on hydrogels and ceramic nanofiller.The wide tunable range of Young’s modulus(27.3 kPa to 3.5 GPa)and ultimate stress(173 kPa to 102 MPa)can be achieved by combining solvent absorption and evaporation process with platelets reinforcement effect.Additionally,a large fracture toughness(∼32,000 J m^(-2))is obtained as a result of the nacre-liked“brick and mortar”structure introduced by shear force during fabrication.The superior flexibility and designability of this material were demonstrated via actuators,portable structure,and metamaterials.Above all,this study provides a new thought to fabricate tough materials with post-tunable mechanical properties. 展开更多
关键词 Mechanical property Post-tunable HYDROGELS Fracture toughness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部