The morphological characteristics and growth habits of medicinal chrysanthemums are described,the cultivation techniques are summarized from the aspects of nursery,transplanting and field management,and the harvest an...The morphological characteristics and growth habits of medicinal chrysanthemums are described,the cultivation techniques are summarized from the aspects of nursery,transplanting and field management,and the harvest and primary processing technology are introduced in detail.展开更多
Microorganisms are crucial in the bioremediation of organophosphorus pesticides. However, most functional microorganisms (> 99%) are yet to be cultivated. This study applied two cultivation-independent approaches, ...Microorganisms are crucial in the bioremediation of organophosphorus pesticides. However, most functional microorganisms (> 99%) are yet to be cultivated. This study applied two cultivation-independent approaches, DNA-SIP and magnetic-nanoparticle mediated isolation (MMI), to identify the functional microorganisms in degrading dimethoate in agricultural soils. MMI identified five dimethoate degraders: Pseudomonas, Bacillus, Ramlibacter, Arthrobacter, and Rhodococcus, whereas DNA-SIP identified three dimethoate degraders: Ramlibacter, Arthrobacter, and Rhodococcus. Also, MMI showed higher resolution than DNA-SIP in identifying functional microorganisms. Two organic phosphohydrolase (OPH) genes: ophC2 and ophB, were involved in dimethoate metabolism, as revealed by DNA-SIP and MMI. The degradation products of dimethoate include omethoate, O,O,S-trimethyl thiophosphorothioate, N-methyl-2-sulfanylacetamide, O,O-diethyl S-hydrogen phosphorodithioate, O,O,O-trimethyl thiophosphate, O,O,S-trimethyl thiophosphorodithioate, and O,O,O-trimethyl phosphoric. This study emphasizes the feasibility of using SIP and MMI to explore the functional dimethoate degraders, expanding our knowledge of microbial resources with cultivation-independent approaches.展开更多
The degradation of ofloxacin(OFX)in the aqueous solution by Fenton oxidation process was investigated in the present study.The optimum operating conditions for the degradation of OFX in our system was determined.More ...The degradation of ofloxacin(OFX)in the aqueous solution by Fenton oxidation process was investigated in the present study.The optimum operating conditions for the degradation of OFX in our system was determined.More importantly,the degradation pathways on a basis of the identification of transformation products during the degradation of OFX were proposed,which revealed that the initial degradation step could be associated with the decarboxylation at the quinolone moiety.Moreover,the detachment of the F element during the Fenton oxidation process has also been detected.Since the carboxylic group within OFX has been considered as an important bridge for binding quinolones with the DNA gyrase target,the decarboxylation process would offer insights into the reduction of antibacterial potentials.展开更多
文摘The morphological characteristics and growth habits of medicinal chrysanthemums are described,the cultivation techniques are summarized from the aspects of nursery,transplanting and field management,and the harvest and primary processing technology are introduced in detail.
基金The authors would like to thank the National Natural Science Foundation of China(Nos.42177359 and 41807119)the Natural Science Foundation of Beijing(No.8212030)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-010A3 and FRF-IDRY-22-001)the Open Fund of National Engineering Laboratory for Site Remediation Technologies(No.NEL-SRT201907).
文摘Microorganisms are crucial in the bioremediation of organophosphorus pesticides. However, most functional microorganisms (> 99%) are yet to be cultivated. This study applied two cultivation-independent approaches, DNA-SIP and magnetic-nanoparticle mediated isolation (MMI), to identify the functional microorganisms in degrading dimethoate in agricultural soils. MMI identified five dimethoate degraders: Pseudomonas, Bacillus, Ramlibacter, Arthrobacter, and Rhodococcus, whereas DNA-SIP identified three dimethoate degraders: Ramlibacter, Arthrobacter, and Rhodococcus. Also, MMI showed higher resolution than DNA-SIP in identifying functional microorganisms. Two organic phosphohydrolase (OPH) genes: ophC2 and ophB, were involved in dimethoate metabolism, as revealed by DNA-SIP and MMI. The degradation products of dimethoate include omethoate, O,O,S-trimethyl thiophosphorothioate, N-methyl-2-sulfanylacetamide, O,O-diethyl S-hydrogen phosphorodithioate, O,O,O-trimethyl thiophosphate, O,O,S-trimethyl thiophosphorodithioate, and O,O,O-trimethyl phosphoric. This study emphasizes the feasibility of using SIP and MMI to explore the functional dimethoate degraders, expanding our knowledge of microbial resources with cultivation-independent approaches.
基金supported by the Foundation and Advanced Technology Research Program of Henan Province (102300410098,0611020900,102300410193,and 122300410286)the Innovation Scientists and Technicians Troop Construction Projects of Henan Provincethe Plan for Scientific Innovation Talent of Henan Province
文摘The degradation of ofloxacin(OFX)in the aqueous solution by Fenton oxidation process was investigated in the present study.The optimum operating conditions for the degradation of OFX in our system was determined.More importantly,the degradation pathways on a basis of the identification of transformation products during the degradation of OFX were proposed,which revealed that the initial degradation step could be associated with the decarboxylation at the quinolone moiety.Moreover,the detachment of the F element during the Fenton oxidation process has also been detected.Since the carboxylic group within OFX has been considered as an important bridge for binding quinolones with the DNA gyrase target,the decarboxylation process would offer insights into the reduction of antibacterial potentials.