期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Peanut-chocolate-ball-inspired construction of the interface engineering between CdS and intergrown Cd:Boosting both the photocatalytic activity and photocorrosion resistance 被引量:1
1
作者 Wending Zhou Feng Li +5 位作者 Xiangfei Yang Wanliang Yang Chun Wang Rui Cao Chengliang Zhou mengkui tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期75-89,I0003,共16页
Interface engineering can improve the charge separation efficiency and inhibit photocorrosion is an emerging direction of developing more efficient and cost-effective photocatalytic systems.Herein,we report the sulfur... Interface engineering can improve the charge separation efficiency and inhibit photocorrosion is an emerging direction of developing more efficient and cost-effective photocatalytic systems.Herein,we report the sulfur-confined intimate Cd S intergrown Cd(Cd S/Cd)Ohmic junction(peanut-chocolate-ball like)for high-efficient H2production with superior anti-photocorrosion ability,which was fabricated from in-situ photoreduction of CdS intergrown Cd2SO4(OH)2(CdS/Cd2SO4(OH)2)prepared through a facile space-controlled-solvothermal method.The ratios of CdS/Cd can be effectively controlled by tunning that of CdS/Cd2SO4(OH)2which were prepared by adjusting the volume of reaction liquid and the remaining space of the reactor.Experiments investigations and density functional theory(DFT)calculations reveal that the Cd S intergrown Cd Ohmic junction interfaces(with appropriate content Cd intergrown on Cd S(19.54 wt%))are beneficial in facilitating the transfer of photogenerated electrons by constructing an interfacial electric field and forming sulfur-confined structures for preventing the positive holes(h+)oxidize the Cd S.This contributes to a high photocatalytic H2production activity of 95.40μmol h-1(about 32.3 times higher than bare Cd S)and possesses outstanding photocatalytic stability over 205 h,much longer than most Cd S-based photocatalysts previously reported.The interface engineering design inspired by the structure of peanut-chocolate-ball can greatly promote the future development of catalytic systems for wider application. 展开更多
关键词 Interface engineering Sulfur-confined CdS/Cd intergrown Ohmic junction DFT calculations Photocorrosion resistance
下载PDF
Development of hydrogen energy and environment
2
作者 mengkui tian Wenfeng SHANGGUAN +1 位作者 Shijie WANG Ziyuan OUYANG 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期121-122,共2页
关键词 氢能 环境 光催化作用 半导体 催化剂 废水处理
下载PDF
Simultaneous removal of SO2 and NO using a spray dryer absorption(SDA) method combined with O3 oxidation for sintering/pelleting flue gas 被引量:7
3
作者 Maoyu Cai Xiaolong Liu +3 位作者 Tingyu Zhu Yang Zou Wenliang Tao mengkui tian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第10期64-71,共8页
Based on the demand of sintering/pelleting flue gas ultra-low emission,a semi-dry method using a spray dryer absorber (SDA) combined with O3 oxidation was proposed for simultaneous removal of SO2 and NO.Effects of O3 ... Based on the demand of sintering/pelleting flue gas ultra-low emission,a semi-dry method using a spray dryer absorber (SDA) combined with O3 oxidation was proposed for simultaneous removal of SO2 and NO.Effects of O3 injection site,O3/NO molar ratio,and spray tower temperature on the removal efficiencies were investigated.It was revealed that both desulfurization and denitrification efficiencies could reach to 85%under the conditions of setting O3 injection site inside of tower,O3/NO molar ratio 1.8,spray tower temperature 85°C,Ca/(S+2N) molar ratio 2.5 and slurry flow rate 300 m L/hr.CaSO3/Ca(OH)2 mixture slurry was used as absorbent to simulate operating conditions in iron and steel industry.The result shows that the addition of CaSO3 weakens both removal efficiencies.In addition,the reaction mechanism of simultaneous removal of SO2 and NO using SDA combined with O3 oxidation was proposed. 展开更多
关键词 O_3 oxidation Desulfurization DENITRIFICATION Semi-dry method Spray dryer absorption
原文传递
Preparation of M/Ce_(1-x)Ti_(x)O_(2)(M=Pt,Rh,Ru)from sol-gel method and their catalytic oxidation activity for diesel Soot 被引量:2
4
作者 Bing Zhao Wenlin Chen +2 位作者 Yifeng Tan Fan Li mengkui tian 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第12期1849-1859,I0002,共12页
A series of Ce_(1-x)Ti_(x)O_(2)mixed oxide catalysts were synthesized by sol-gel method and then loading of noble metal(M=Pt,Rh,Ru)was used for soot oxidation.Ti-doped Ce_(1-x)Ti_(x)O_(2)catalysts(x is the molar ratio... A series of Ce_(1-x)Ti_(x)O_(2)mixed oxide catalysts were synthesized by sol-gel method and then loading of noble metal(M=Pt,Rh,Ru)was used for soot oxidation.Ti-doped Ce_(1-x)Ti_(x)O_(2)catalysts(x is the molar ratio of Ti/(Ti+Ce)and ranges from 0.1 to 0.5)exhibit much better oxidation performance than CeO_(2)catalyst,and the Ce_(0.9)Ti_(0.1)O_(2)catalyst calcined at 500℃has the best catalysis activity.Each noble metal(1 wt%)was supported on Ce_(0.9)Ti_(0.1)O_(2)(M/C9 T1)and the properties of the catalysts were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),Raman,Brunauer-Emmett-Teller(BET)method,and H_(2)-temperature programmed reduction(H_(2)-TPR)results.Results show that the introduction of Ti into CeO_(2)forming Ti-O-Ce structure enhances the catalytic activity and increases the number of oxygen vacancies at the catalyst surface.The noble metal is highly dispersed over Ce_(0.9)Ti_(0.1)O_(2),and M/C9 T1 catalysts present enhanced activity in comparison to Ce_(0.9)Ti_(0.1)O_(2).It is found that noble metals can greatly increase the activity of the catalyst and the corresponding oxidation rate of soot can enhance the electron transfer capacity and oxygen adsorption capacity of the catalyst.A small amount of Ti doping in CeO_(2)can significantly improve the activity of the catalyst,while a large amount of Ti reduces the performance of the catalyst because a large amount of Ti is enriched on the surface of the catalyst,which hinders the contact and reaction between the catalyst and the soot. 展开更多
关键词 Diesel oxidation catalyst Soot oxidation Ce-Ti oxides Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部