Interface engineering can improve the charge separation efficiency and inhibit photocorrosion is an emerging direction of developing more efficient and cost-effective photocatalytic systems.Herein,we report the sulfur...Interface engineering can improve the charge separation efficiency and inhibit photocorrosion is an emerging direction of developing more efficient and cost-effective photocatalytic systems.Herein,we report the sulfur-confined intimate Cd S intergrown Cd(Cd S/Cd)Ohmic junction(peanut-chocolate-ball like)for high-efficient H2production with superior anti-photocorrosion ability,which was fabricated from in-situ photoreduction of CdS intergrown Cd2SO4(OH)2(CdS/Cd2SO4(OH)2)prepared through a facile space-controlled-solvothermal method.The ratios of CdS/Cd can be effectively controlled by tunning that of CdS/Cd2SO4(OH)2which were prepared by adjusting the volume of reaction liquid and the remaining space of the reactor.Experiments investigations and density functional theory(DFT)calculations reveal that the Cd S intergrown Cd Ohmic junction interfaces(with appropriate content Cd intergrown on Cd S(19.54 wt%))are beneficial in facilitating the transfer of photogenerated electrons by constructing an interfacial electric field and forming sulfur-confined structures for preventing the positive holes(h+)oxidize the Cd S.This contributes to a high photocatalytic H2production activity of 95.40μmol h-1(about 32.3 times higher than bare Cd S)and possesses outstanding photocatalytic stability over 205 h,much longer than most Cd S-based photocatalysts previously reported.The interface engineering design inspired by the structure of peanut-chocolate-ball can greatly promote the future development of catalytic systems for wider application.展开更多
Based on the demand of sintering/pelleting flue gas ultra-low emission,a semi-dry method using a spray dryer absorber (SDA) combined with O3 oxidation was proposed for simultaneous removal of SO2 and NO.Effects of O3 ...Based on the demand of sintering/pelleting flue gas ultra-low emission,a semi-dry method using a spray dryer absorber (SDA) combined with O3 oxidation was proposed for simultaneous removal of SO2 and NO.Effects of O3 injection site,O3/NO molar ratio,and spray tower temperature on the removal efficiencies were investigated.It was revealed that both desulfurization and denitrification efficiencies could reach to 85%under the conditions of setting O3 injection site inside of tower,O3/NO molar ratio 1.8,spray tower temperature 85°C,Ca/(S+2N) molar ratio 2.5 and slurry flow rate 300 m L/hr.CaSO3/Ca(OH)2 mixture slurry was used as absorbent to simulate operating conditions in iron and steel industry.The result shows that the addition of CaSO3 weakens both removal efficiencies.In addition,the reaction mechanism of simultaneous removal of SO2 and NO using SDA combined with O3 oxidation was proposed.展开更多
A series of Ce_(1-x)Ti_(x)O_(2)mixed oxide catalysts were synthesized by sol-gel method and then loading of noble metal(M=Pt,Rh,Ru)was used for soot oxidation.Ti-doped Ce_(1-x)Ti_(x)O_(2)catalysts(x is the molar ratio...A series of Ce_(1-x)Ti_(x)O_(2)mixed oxide catalysts were synthesized by sol-gel method and then loading of noble metal(M=Pt,Rh,Ru)was used for soot oxidation.Ti-doped Ce_(1-x)Ti_(x)O_(2)catalysts(x is the molar ratio of Ti/(Ti+Ce)and ranges from 0.1 to 0.5)exhibit much better oxidation performance than CeO_(2)catalyst,and the Ce_(0.9)Ti_(0.1)O_(2)catalyst calcined at 500℃has the best catalysis activity.Each noble metal(1 wt%)was supported on Ce_(0.9)Ti_(0.1)O_(2)(M/C9 T1)and the properties of the catalysts were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),Raman,Brunauer-Emmett-Teller(BET)method,and H_(2)-temperature programmed reduction(H_(2)-TPR)results.Results show that the introduction of Ti into CeO_(2)forming Ti-O-Ce structure enhances the catalytic activity and increases the number of oxygen vacancies at the catalyst surface.The noble metal is highly dispersed over Ce_(0.9)Ti_(0.1)O_(2),and M/C9 T1 catalysts present enhanced activity in comparison to Ce_(0.9)Ti_(0.1)O_(2).It is found that noble metals can greatly increase the activity of the catalyst and the corresponding oxidation rate of soot can enhance the electron transfer capacity and oxygen adsorption capacity of the catalyst.A small amount of Ti doping in CeO_(2)can significantly improve the activity of the catalyst,while a large amount of Ti reduces the performance of the catalyst because a large amount of Ti is enriched on the surface of the catalyst,which hinders the contact and reaction between the catalyst and the soot.展开更多
基金supported by the National Natural Science Foundation of China(22162008,22162007)the Science and Technology Supporting Project of Guizhou Province([2022]208,[2021]480)the Basic Research Program of Science&Technology Department of Guizhou Province([2020]1Y055)。
文摘Interface engineering can improve the charge separation efficiency and inhibit photocorrosion is an emerging direction of developing more efficient and cost-effective photocatalytic systems.Herein,we report the sulfur-confined intimate Cd S intergrown Cd(Cd S/Cd)Ohmic junction(peanut-chocolate-ball like)for high-efficient H2production with superior anti-photocorrosion ability,which was fabricated from in-situ photoreduction of CdS intergrown Cd2SO4(OH)2(CdS/Cd2SO4(OH)2)prepared through a facile space-controlled-solvothermal method.The ratios of CdS/Cd can be effectively controlled by tunning that of CdS/Cd2SO4(OH)2which were prepared by adjusting the volume of reaction liquid and the remaining space of the reactor.Experiments investigations and density functional theory(DFT)calculations reveal that the Cd S intergrown Cd Ohmic junction interfaces(with appropriate content Cd intergrown on Cd S(19.54 wt%))are beneficial in facilitating the transfer of photogenerated electrons by constructing an interfacial electric field and forming sulfur-confined structures for preventing the positive holes(h+)oxidize the Cd S.This contributes to a high photocatalytic H2production activity of 95.40μmol h-1(about 32.3 times higher than bare Cd S)and possesses outstanding photocatalytic stability over 205 h,much longer than most Cd S-based photocatalysts previously reported.The interface engineering design inspired by the structure of peanut-chocolate-ball can greatly promote the future development of catalytic systems for wider application.
基金supported by the Nationals Key Research and Development Program of China (No.2017YFC0210600)the National Natural Science Foundation of China (No.51978644)。
文摘Based on the demand of sintering/pelleting flue gas ultra-low emission,a semi-dry method using a spray dryer absorber (SDA) combined with O3 oxidation was proposed for simultaneous removal of SO2 and NO.Effects of O3 injection site,O3/NO molar ratio,and spray tower temperature on the removal efficiencies were investigated.It was revealed that both desulfurization and denitrification efficiencies could reach to 85%under the conditions of setting O3 injection site inside of tower,O3/NO molar ratio 1.8,spray tower temperature 85°C,Ca/(S+2N) molar ratio 2.5 and slurry flow rate 300 m L/hr.CaSO3/Ca(OH)2 mixture slurry was used as absorbent to simulate operating conditions in iron and steel industry.The result shows that the addition of CaSO3 weakens both removal efficiencies.In addition,the reaction mechanism of simultaneous removal of SO2 and NO using SDA combined with O3 oxidation was proposed.
基金Project supported by National Key Research and Development Program of China(2018YFC1801706-01)the Natural Science Foundation of China(21663009,2216020078)the Science and Technology Project of Guizhou Province(20192835,2021480)。
文摘A series of Ce_(1-x)Ti_(x)O_(2)mixed oxide catalysts were synthesized by sol-gel method and then loading of noble metal(M=Pt,Rh,Ru)was used for soot oxidation.Ti-doped Ce_(1-x)Ti_(x)O_(2)catalysts(x is the molar ratio of Ti/(Ti+Ce)and ranges from 0.1 to 0.5)exhibit much better oxidation performance than CeO_(2)catalyst,and the Ce_(0.9)Ti_(0.1)O_(2)catalyst calcined at 500℃has the best catalysis activity.Each noble metal(1 wt%)was supported on Ce_(0.9)Ti_(0.1)O_(2)(M/C9 T1)and the properties of the catalysts were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),Raman,Brunauer-Emmett-Teller(BET)method,and H_(2)-temperature programmed reduction(H_(2)-TPR)results.Results show that the introduction of Ti into CeO_(2)forming Ti-O-Ce structure enhances the catalytic activity and increases the number of oxygen vacancies at the catalyst surface.The noble metal is highly dispersed over Ce_(0.9)Ti_(0.1)O_(2),and M/C9 T1 catalysts present enhanced activity in comparison to Ce_(0.9)Ti_(0.1)O_(2).It is found that noble metals can greatly increase the activity of the catalyst and the corresponding oxidation rate of soot can enhance the electron transfer capacity and oxygen adsorption capacity of the catalyst.A small amount of Ti doping in CeO_(2)can significantly improve the activity of the catalyst,while a large amount of Ti reduces the performance of the catalyst because a large amount of Ti is enriched on the surface of the catalyst,which hinders the contact and reaction between the catalyst and the soot.