STSE(Science,Technology,Society and Environment)教育理念注重在情境化教学中促进学生对知识的理解和掌握,强调科学、技术、社会、环境的相互关系,并实现学生对社会发展和进步的进一步认识。本文以“北京冬奥会”这一热点事件为情境...STSE(Science,Technology,Society and Environment)教育理念注重在情境化教学中促进学生对知识的理解和掌握,强调科学、技术、社会、环境的相互关系,并实现学生对社会发展和进步的进一步认识。本文以“北京冬奥会”这一热点事件为情境,基于STSE教育理念,通过将化学与北京冬奥会中社会、技术、环境等元素有机融合,阐述化学如何为北京冬奥会赋能,引导学生对化学产生兴趣,并在潜移默化中提升学生可持续发展的意识,为现代化科技强国建设培养化学类人才。展开更多
Volatile organic compounds play essential roles in plant environment interactions as well as determining the fragrance of plants.Although gas chromatography-mass spectrometry-based untargeted metabolo-mics is commonly...Volatile organic compounds play essential roles in plant environment interactions as well as determining the fragrance of plants.Although gas chromatography-mass spectrometry-based untargeted metabolo-mics is commonly used to assess plant volatiles,it suffers from high spectral convolution,low detection sensitivity,a limited number of annotated metabolites,and relatively poor reproducibility.Here,we report a widely targeted volatilomics(WTV)method that involves using a“targeted spectra extraction”algorithm to address spectral convolution,constructing a high-coverage MS2 spectral tag library to expand volatile annotation,adapting a multiple reaction monitoring mode to improve sensitivity,and using regression models to adjust for signal drift.The newly developed method was used to profile the volatilome of rice grains.Compared with the untargeted method,the newly developed WTV method shows higher sensitivity(for example,the signal-to-noise ratio of guaicol increased from 4.1 to 18.8),high annotation coverage(the number of annotated volatiles increased from 43 to 132),and better reproducibility(the number of volatiles in quality control samples with relative standard deviation value below 30.0%increased from 14 to 92 after normalization).Using the WTV method,we studied the metabolic responses of tomato to environmental stimuli and profiled the volatilomes of different rice accessions.The results identified benzothiazole as a potential airborne signal priming tomato plants for enhanced defense and 2-nonanone and 2-heptanone as novel aromatic compounds contributing to rice fragrance.These case studies suggest that the widely targeted volatilomics method is more efficient than those currently used and may considerably promote plant volatilomics studies.展开更多
文摘STSE(Science,Technology,Society and Environment)教育理念注重在情境化教学中促进学生对知识的理解和掌握,强调科学、技术、社会、环境的相互关系,并实现学生对社会发展和进步的进一步认识。本文以“北京冬奥会”这一热点事件为情境,基于STSE教育理念,通过将化学与北京冬奥会中社会、技术、环境等元素有机融合,阐述化学如何为北京冬奥会赋能,引导学生对化学产生兴趣,并在潜移默化中提升学生可持续发展的意识,为现代化科技强国建设培养化学类人才。
基金This work was supported by the Hainan Province Major Research Project(modern agriculture)ZDYF2020066the Hainan Provincial Natural Science Foundation of China(320MS011)the Hainan Major Science and Technology Project(Nno.ZDKJ202002).
文摘Volatile organic compounds play essential roles in plant environment interactions as well as determining the fragrance of plants.Although gas chromatography-mass spectrometry-based untargeted metabolo-mics is commonly used to assess plant volatiles,it suffers from high spectral convolution,low detection sensitivity,a limited number of annotated metabolites,and relatively poor reproducibility.Here,we report a widely targeted volatilomics(WTV)method that involves using a“targeted spectra extraction”algorithm to address spectral convolution,constructing a high-coverage MS2 spectral tag library to expand volatile annotation,adapting a multiple reaction monitoring mode to improve sensitivity,and using regression models to adjust for signal drift.The newly developed method was used to profile the volatilome of rice grains.Compared with the untargeted method,the newly developed WTV method shows higher sensitivity(for example,the signal-to-noise ratio of guaicol increased from 4.1 to 18.8),high annotation coverage(the number of annotated volatiles increased from 43 to 132),and better reproducibility(the number of volatiles in quality control samples with relative standard deviation value below 30.0%increased from 14 to 92 after normalization).Using the WTV method,we studied the metabolic responses of tomato to environmental stimuli and profiled the volatilomes of different rice accessions.The results identified benzothiazole as a potential airborne signal priming tomato plants for enhanced defense and 2-nonanone and 2-heptanone as novel aromatic compounds contributing to rice fragrance.These case studies suggest that the widely targeted volatilomics method is more efficient than those currently used and may considerably promote plant volatilomics studies.