Resistive random access memory(RRAM)has emerged as a new discipline promoting the development of new materials and devices toward a broad range of electronic and energy applications.Here,we realized a memristive devic...Resistive random access memory(RRAM)has emerged as a new discipline promoting the development of new materials and devices toward a broad range of electronic and energy applications.Here,we realized a memristive device with weak dependence on the top electrodes and demonstrated the quantized conductance(QC)nature in BiVO4 matrix.The electronic properties have been investigated by the measurements of I-V curves,where the resistive switching(RS)phenomenon with stable switching ratio and excellent longterm retention capabilities are identified.Two more inert materials,TiN and Pd,are applied as the top electrodes to exclude the influence of electrodes on the RS states and QC behavior.The X-ray photoelectron spectroscopy results and transport measurements reveal that the conductive filament(CF)is composed by elemental bismuth.The naturally existed oxygen vacancies in BiVO4 matrix plays as the role of catalyst in the formation and dissolution of CF in BiVO4-based RRAM device,which is the primary cause for the observed weak dependence of switching performance in this device on the type of top electrodes.Our results clearly illustrate that BiVO4 could be a new idea platform to realize the high scalability,high cycling endurance,and multilevel storage RRAM devices.展开更多
基金Fundamental Research Fund for Centre UniversityNational Natural Science Foundation of China,Grant/Award Numbers:11874003,11904015,51472016,51672018+3 种基金Natural Science Foundation of Beijing Municipality,Grant/Award Number:Z180007funded by National Natural Science Foundation of China Grant/Award Numbers:11874003,51672018,51472016,and 11904015Beijing Natural Science Foundation Grant/Award Number:Z180007and Fundamental Research Fund for Centre University.
文摘Resistive random access memory(RRAM)has emerged as a new discipline promoting the development of new materials and devices toward a broad range of electronic and energy applications.Here,we realized a memristive device with weak dependence on the top electrodes and demonstrated the quantized conductance(QC)nature in BiVO4 matrix.The electronic properties have been investigated by the measurements of I-V curves,where the resistive switching(RS)phenomenon with stable switching ratio and excellent longterm retention capabilities are identified.Two more inert materials,TiN and Pd,are applied as the top electrodes to exclude the influence of electrodes on the RS states and QC behavior.The X-ray photoelectron spectroscopy results and transport measurements reveal that the conductive filament(CF)is composed by elemental bismuth.The naturally existed oxygen vacancies in BiVO4 matrix plays as the role of catalyst in the formation and dissolution of CF in BiVO4-based RRAM device,which is the primary cause for the observed weak dependence of switching performance in this device on the type of top electrodes.Our results clearly illustrate that BiVO4 could be a new idea platform to realize the high scalability,high cycling endurance,and multilevel storage RRAM devices.