Urban surface water pollution poses significant threats to aquatic ecosystems and human health.Conventional nitrogen removal technologies used in urban surface water exhibit drawbacks such as high consumption of carbo...Urban surface water pollution poses significant threats to aquatic ecosystems and human health.Conventional nitrogen removal technologies used in urban surface water exhibit drawbacks such as high consumption of carbon sources,high sludge production,and focus on dissolved oxygen(DO)concentration while neglecting the impact of DO gradients.Here,we show an ecological filter walls(EFW)that removes pollutants from urban surface water.We utilized a polymer-based three-dimensional matrix to enhance water permeability,and emergent plants were integrated into the EFW to facilitate biofilm formation.We observed that varying aeration intensities within the EFW's aerobic zone resulted in distinct DO gradients,with an optimal DO control at 3.19±0.2 mg L^(-1) achieving superior nitrogen removal efficiencies.Specifically,the removal efficiencies of total organic carbon,total nitrogen,ammonia,and nitrate were 79.4%,81.3%,99.6%,and 79.1%,respectively.Microbial community analysis under a 3 mg L^(-1) DO condition revealed a shift in microbial composition and abundance,with genera such as Dechloromonas,Acinetobacter,unclassified_f__Comamonadaceae,SM1A02 and Pseudomonas playing pivotal roles in carbon and nitrogen elimination.Notably,the EFW facilitated shortcut nitrification-denitrification processes,predominantly contributing to nitrogen removal.Considering low manufacturing cost,flexible application,small artificial trace,and good pollutant removal ability,EFW has promising potential as an innovative approach to urban surface water treatment.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.21972036 and 21673061)the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2022TS07 and ES202210)+1 种基金support from the National Key Research and Development Program of China(Grant No.2017YFA0207204)support of the Innovation Team in Key Areas of the Ministry of Science and Technology(AUGA2160200918)and the Heilongjiang Touyan Team.
文摘Urban surface water pollution poses significant threats to aquatic ecosystems and human health.Conventional nitrogen removal technologies used in urban surface water exhibit drawbacks such as high consumption of carbon sources,high sludge production,and focus on dissolved oxygen(DO)concentration while neglecting the impact of DO gradients.Here,we show an ecological filter walls(EFW)that removes pollutants from urban surface water.We utilized a polymer-based three-dimensional matrix to enhance water permeability,and emergent plants were integrated into the EFW to facilitate biofilm formation.We observed that varying aeration intensities within the EFW's aerobic zone resulted in distinct DO gradients,with an optimal DO control at 3.19±0.2 mg L^(-1) achieving superior nitrogen removal efficiencies.Specifically,the removal efficiencies of total organic carbon,total nitrogen,ammonia,and nitrate were 79.4%,81.3%,99.6%,and 79.1%,respectively.Microbial community analysis under a 3 mg L^(-1) DO condition revealed a shift in microbial composition and abundance,with genera such as Dechloromonas,Acinetobacter,unclassified_f__Comamonadaceae,SM1A02 and Pseudomonas playing pivotal roles in carbon and nitrogen elimination.Notably,the EFW facilitated shortcut nitrification-denitrification processes,predominantly contributing to nitrogen removal.Considering low manufacturing cost,flexible application,small artificial trace,and good pollutant removal ability,EFW has promising potential as an innovative approach to urban surface water treatment.