期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
On the Development of a Model for the Prediction of Liquid Loading in Gas Wells with an Inclined Section 被引量:2
1
作者 mengna liao Ruiquan liao +4 位作者 Jie Liu Shuangquan Liu Li Li Xiuwu Wang Yang Cheng 《Fluid Dynamics & Materials Processing》 EI 2019年第5期527-544,共18页
The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes o... The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes of experiments conducted using air-water mixtures in a horizontal well.The results show that the configuration with an inclined section is the most susceptible to liquid loading.Laboratory experiments in an inclined pipe were also conducted to analyze the variation of the critical gas flow rate under different angles,pressure and liquid volume(taking the equal liquid volume at inlet and outlet as the criterion for judging on the critical state).According to these results,the related angle of the inclined section ranges from 45°to 60°.Finally,a modified approach based on the Belfroid model has been used to predict the critical gas flow rate for the inclined section.After comparison with field data,this modified model shows an accuracy of 96%,indicating that it has better performances with respect to other models used in the past to predict liquid loading. 展开更多
关键词 Horizontal gas well inclined section liquid loading critical gas flow rate air-water flow
下载PDF
Application of plant DNA metabarcoding of lake sediments for monitoring vegetation compositions on the Tibetan Plateau
2
作者 Kai WU Kai LI +5 位作者 Weihan JIA Kathleen RSTOOF-LEICHSENRING Ulrike HERZSCHUH Jian NI mengna liao Fang TIAN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第11期3594-3609,共16页
Benefiting from the rapid development of environmental DNA(eDNA) technologies, sedimentary DNA(sedDNA)emerges as a promising tool for monitoring plant compositions in remote regions. The Tibetan Plateau(TP), renowned ... Benefiting from the rapid development of environmental DNA(eDNA) technologies, sedimentary DNA(sedDNA)emerges as a promising tool for monitoring plant compositions in remote regions. The Tibetan Plateau(TP), renowned for its harsh environment and numerous ponds and lakes, presents a potentially demanding region for the application of sedDNA on vegetation investigations. Here, we used the g and h universal primers for the P6 loop region of the chloroplast trn L(UAA)intron to amplify plant DNA in surface sediments from 59 ponds and small lakes on the southwestern TP. The applicability and limitations of using plant DNA metabarcoding for modern vegetation monitoring and palaeo-vegetation reconstructions have been assessed by comparing sedDNA, pollen, and vegetation survey data. Our results showed that plant DNA metabarcoding recorded 186 terrestrial taxa, of which 30.1% can be identified at the species level. The plant sedDNA approach can effectively disclose the dominant plant taxa(including Asteraceae, Cyperaceae and Poaceae) and significant vegetation assemblages in the vicinity of the investigated sites. The number of taxa and taxonomic resolution of plant sedDNA exceeded that of pollen analysis(75 taxa detected, 5.3% can be identified at species level). Unlike pollen that retains a broad spectrum of regional plant signals(including Pinus and Artemisia), plant sedDNA mirrors very local plants, underscoring its utility in local vegetation monitoring and reconstructions. To conclude, plant DNA metabarcoding of(small) lake sediments warrant increased attention in the future for local vegetation monitoring and reconstructions on the TP. 展开更多
关键词 Sedimentary DNA(sedDNA) Metabarcoding POLLEN Vegetation composition Tibetan Plateau
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部