期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Tensile Properties and Wear Resistance of Mg Alloy Containing High Si as Implant Materials
1
作者 mengqi cong Yang Zhang +3 位作者 Yunlong Zhang Xiao Liu Yalin Lu Xiaoping Li 《Journal of Renewable Materials》 SCIE EI 2023年第4期1977-1989,共13页
Magnesium alloy has been considered as one of the third-generation biomaterials for the regeneration and support of functional bone tissue.As a regeneration implant material with great potential applications,in-situ M... Magnesium alloy has been considered as one of the third-generation biomaterials for the regeneration and support of functional bone tissue.As a regeneration implant material with great potential applications,in-situ Mg_(2)Si phase reinforced Mg-6Zn cast alloy was comprehensively studied and expected to possess excellent mechanical properties via the refining and modifying of Mg_(2)Si reinforcements.The present study demonstrates that the primary and eutectic Mg_(2)Si phase can be greatly modified by the yttrium(Y)addition.The size of the primary Mg_(2)Si phases can be reduced to~20μm with an addition of 0.5 wt.%Y.This phenomenon is mainly attributed to the poisoning effect of the Y element.Moreover,wear resistance and tensile properties of the ternary alloy have also been improved by the Y addition.Mg-6Zn-4Si-0.5Y alloy exhibits optimal tensile properties and wears resistance.The ultimate tensile strength and the elongation of the alloy with 0.5 wt.%Y are 50%and 65%higher than those of the ternary alloy,respectively.Excessive Y addition(1.0 wt.%)deteriorates the tensile properties of Mg-Zn-Si alloy.The improvement of the tensile properties is mainly due to the modification of primary and eutectic Mg_(2)Si phases as well as the solid solution strengthening of the Y atoms.This study provides a certain implication for the application of Mg-Zn-Si alloys containing Y elements as regeneration implants. 展开更多
关键词 Magnesium alloys Mg2Si phase microstructure REGENERATION mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部