The IB metal(Au,Ag and Cu)alloyed Pd single atom catalysts had been proved to be efficient in promoting the selectivity for hydrogenation of acetylene to ethylene.As a base metal in the same group as Pd,the Ni-based c...The IB metal(Au,Ag and Cu)alloyed Pd single atom catalysts had been proved to be efficient in promoting the selectivity for hydrogenation of acetylene to ethylene.As a base metal in the same group as Pd,the Ni-based catalysts are also active for hydrogenation reactions.Herein,the effects of the IB metals on the Ni/SiO2 catalyst for the selective hydrogenation of acetylene were systematically studied.Different from the Pd/SiO2 catalyst,the monometallic Ni/SiO2 catalyst is not active at low temperatures.The addition of the IB metals to the Ni/SiO2 catalysts can greatly enhance the activity.Besides,the catalytic activity of the AuNix/SiO2 and CuNix/SiO2 catalysts increase with the reduction temperature,while the AgNix/SiO2 catalysts are not sensitive to the pretreatment temperature.The origin of the effect of the different IB metals on the Ni-based catalysts for selective hydrogenation of acetylene is discussed based on the characterizations by XRD,TPR and microcalorimetric measurements.展开更多
Supported Au catalysts have been reported to exhibit high ethylene selectivity in the hydrogenation of acetylene,but the conversion is relatively low.Adding a second metal to Au has proven to be a promising approach t...Supported Au catalysts have been reported to exhibit high ethylene selectivity in the hydrogenation of acetylene,but the conversion is relatively low.Adding a second metal to Au has proven to be a promising approach to enhance its catalytic performance in acetylene hydrogenation.In this work,SiO2‐supported Au‐Ni bimetallic catalysts were synthesized and investigated in the selective hydrogenation of acetylene.The Au‐Ni bimetallic catalysts exhibited much higher catalytic performance than that of the corresponding monometallic Au or Ni catalysts.By tuning the reduction temperature and/or Ni loading,we obtained an Au‐Ni/SiO2catalyst with optimal performance.The results of transmission electron microscopy imaging revealed that the Au‐Ni bimetallic particles were highly dispersed on the SiO2support.Meanwhile,analysis of the bimetallic catalyst by energy‐dispersive X‐ray spectroscopy,high‐resolution transmission electron microscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy demonstrated the formation of Au‐Ni alloy,which contributed to the synergistic effect between Au and Ni in the hydrogenation of acetylene.展开更多
Cu‐alloyed Pd single‐atom catalysts exhibit excellent catalytic performance for the semi‐hydrogenation of acetylene;however,the limit of the Cu/Pd atomic ratio for forming the alloyed Pd single‐atom catalyst is am...Cu‐alloyed Pd single‐atom catalysts exhibit excellent catalytic performance for the semi‐hydrogenation of acetylene;however,the limit of the Cu/Pd atomic ratio for forming the alloyed Pd single‐atom catalyst is ambiguous.Herein,silica‐supported Cu-Pd bimetallic catalysts with fixed Pd content and varied Cu loadings were synthesized using an incipient wetness co‐impregnation method.The X‐ray absorption spectroscopy results indicated that Pd formed an alloy with Cu after reduction at250°C and that the Pd atoms were completely isolated by Cu for Cu/Pd atomic ratios≥40/1.Notably,increasing the reduction temperature from250to400°C hardly affected the catalytic performances of the Cu-Pd/SiO2catalysts.This finding can be attributed to the similar chemical environments of Pd demonstrated by the X‐ray absorption spectroscopy results.展开更多
文摘The IB metal(Au,Ag and Cu)alloyed Pd single atom catalysts had been proved to be efficient in promoting the selectivity for hydrogenation of acetylene to ethylene.As a base metal in the same group as Pd,the Ni-based catalysts are also active for hydrogenation reactions.Herein,the effects of the IB metals on the Ni/SiO2 catalyst for the selective hydrogenation of acetylene were systematically studied.Different from the Pd/SiO2 catalyst,the monometallic Ni/SiO2 catalyst is not active at low temperatures.The addition of the IB metals to the Ni/SiO2 catalysts can greatly enhance the activity.Besides,the catalytic activity of the AuNix/SiO2 and CuNix/SiO2 catalysts increase with the reduction temperature,while the AgNix/SiO2 catalysts are not sensitive to the pretreatment temperature.The origin of the effect of the different IB metals on the Ni-based catalysts for selective hydrogenation of acetylene is discussed based on the characterizations by XRD,TPR and microcalorimetric measurements.
基金supported by the National Natural Science Foundation of China (21303194,21476227,21522608,21573232,21690084)Youth Innovation Promotion Association of the Chinese Academy of Sciences (2014163)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020100)the National Key Projects for Fundamental Research and Development of China (2016YFA0202801)the Department of Science and Technology of Liaoning Province (2015020086-101)~~
文摘Supported Au catalysts have been reported to exhibit high ethylene selectivity in the hydrogenation of acetylene,but the conversion is relatively low.Adding a second metal to Au has proven to be a promising approach to enhance its catalytic performance in acetylene hydrogenation.In this work,SiO2‐supported Au‐Ni bimetallic catalysts were synthesized and investigated in the selective hydrogenation of acetylene.The Au‐Ni bimetallic catalysts exhibited much higher catalytic performance than that of the corresponding monometallic Au or Ni catalysts.By tuning the reduction temperature and/or Ni loading,we obtained an Au‐Ni/SiO2catalyst with optimal performance.The results of transmission electron microscopy imaging revealed that the Au‐Ni bimetallic particles were highly dispersed on the SiO2support.Meanwhile,analysis of the bimetallic catalyst by energy‐dispersive X‐ray spectroscopy,high‐resolution transmission electron microscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy demonstrated the formation of Au‐Ni alloy,which contributed to the synergistic effect between Au and Ni in the hydrogenation of acetylene.
基金supported by the National Natural Science Foundation of China(21303194,21476227,21522608 and 21690084)Youth Innovation Promotion Association of the Chinese Academy of Sciences(2014163)+2 种基金the National Key Projects for Fundamental Research and Development of China(2016YFA0202801)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020100)the department of science and technology of Liaoning province under contract of 2015020086-101~~
文摘Cu‐alloyed Pd single‐atom catalysts exhibit excellent catalytic performance for the semi‐hydrogenation of acetylene;however,the limit of the Cu/Pd atomic ratio for forming the alloyed Pd single‐atom catalyst is ambiguous.Herein,silica‐supported Cu-Pd bimetallic catalysts with fixed Pd content and varied Cu loadings were synthesized using an incipient wetness co‐impregnation method.The X‐ray absorption spectroscopy results indicated that Pd formed an alloy with Cu after reduction at250°C and that the Pd atoms were completely isolated by Cu for Cu/Pd atomic ratios≥40/1.Notably,increasing the reduction temperature from250to400°C hardly affected the catalytic performances of the Cu-Pd/SiO2catalysts.This finding can be attributed to the similar chemical environments of Pd demonstrated by the X‐ray absorption spectroscopy results.