A mobile fiber-optic laser-induced breakdown spectrometer(FO-LIBS) prototype was developed to rapidly detect a large quantity of steel material online and quantitatively analyze the trace elements in a large-diameter ...A mobile fiber-optic laser-induced breakdown spectrometer(FO-LIBS) prototype was developed to rapidly detect a large quantity of steel material online and quantitatively analyze the trace elements in a large-diameter steel tube.Twenty-four standard samples and a polynomial fitting method were used to establish calibration curve models.The R^2 factors of the calibration curves were all above 0.99,except for Cu,indicating the elements’ strong self-absorption effect.Five special steel materials were rapidly detected in the steel mill.The average absolute errors of Mn,Cr,Ni,V,Cu,and Mo in the special steel materials were 0.039,0.440,0.033,0.057,0.003,and0.07 wt%,respectively,and their average relative errors fluctuated from 2.9% to 15.7%.The results demonstrated that the performance of this mobile FO-LIBS prototype can be compared with that of most conventional LIBS systems,but the more robust and flexible characteristics of the FO-LIBS prototype provide a feasible approach for promoting LIBS from the laboratory to the industry.展开更多
In recent years,a laser-induced breakdown spectrometer(LIBS)combined with machine learning has been widely developed for steel classification.However,the much redundant information of LIBS spectra increases the comput...In recent years,a laser-induced breakdown spectrometer(LIBS)combined with machine learning has been widely developed for steel classification.However,the much redundant information of LIBS spectra increases the computation complexity for classification.In this work,restricted Boltzmann machines(RBM)and principal component analysis(PCA)were used for dimension reduction of datasets,respectively.Then,a support vector machine(SVM)was adopted to process feature information.Two models(RBM-SVM and PCA-SVM)are compared in terms of performance.After optimization,the accuracy of the RBM-SVM model can achieve 100%,and the maximum dimension reduction time is 33.18 s,which is nearly half of that of the PCA model(53.19 s).These results preliminarily indicate that LIBS combined with RBM-SVM has great potential in the real-time classification of steel.展开更多
基金supported by National Natural Science Foundation of China(Nos.61705064,11647122)the Natural Science Foundation of Hubei Province(Nos.2018CFB773,2018CFB672)the Project of the Hubei Provincial Department of Education(No.T201617)。
文摘A mobile fiber-optic laser-induced breakdown spectrometer(FO-LIBS) prototype was developed to rapidly detect a large quantity of steel material online and quantitatively analyze the trace elements in a large-diameter steel tube.Twenty-four standard samples and a polynomial fitting method were used to establish calibration curve models.The R^2 factors of the calibration curves were all above 0.99,except for Cu,indicating the elements’ strong self-absorption effect.Five special steel materials were rapidly detected in the steel mill.The average absolute errors of Mn,Cr,Ni,V,Cu,and Mo in the special steel materials were 0.039,0.440,0.033,0.057,0.003,and0.07 wt%,respectively,and their average relative errors fluctuated from 2.9% to 15.7%.The results demonstrated that the performance of this mobile FO-LIBS prototype can be compared with that of most conventional LIBS systems,but the more robust and flexible characteristics of the FO-LIBS prototype provide a feasible approach for promoting LIBS from the laboratory to the industry.
基金supported by National Natural Science Foundation of China(No.61705064)the Natural Science Foundation of Hubei Province(No.2021CFB607)+1 种基金the Natural Science Foundation of Xiaogan City(No.XGKJ2021010003)the Project of the Hubei Provincial Department of Education(No.T201617)。
文摘In recent years,a laser-induced breakdown spectrometer(LIBS)combined with machine learning has been widely developed for steel classification.However,the much redundant information of LIBS spectra increases the computation complexity for classification.In this work,restricted Boltzmann machines(RBM)and principal component analysis(PCA)were used for dimension reduction of datasets,respectively.Then,a support vector machine(SVM)was adopted to process feature information.Two models(RBM-SVM and PCA-SVM)are compared in terms of performance.After optimization,the accuracy of the RBM-SVM model can achieve 100%,and the maximum dimension reduction time is 33.18 s,which is nearly half of that of the PCA model(53.19 s).These results preliminarily indicate that LIBS combined with RBM-SVM has great potential in the real-time classification of steel.