期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere 被引量:9
1
作者 mengting cai Hehe Zhang +11 位作者 Yinggan Zhang Bensheng Xiao Lei Wang Miao Li Ying Wu Baisheng Sa Honggang Liao Li Zhang Shuangqiang Chen Dong-Liang Peng Ming-Sheng Wang Qiaobao Zhang 《Science Bulletin》 SCIE EI CSCD 2022年第9期933-945,M0004,共14页
Developing suitable electrode materials capable of tolerating severe structural deformation and overcoming sluggish reaction kinetics resulting from the large radius of potassium ion(K+)insertion is critical for pract... Developing suitable electrode materials capable of tolerating severe structural deformation and overcoming sluggish reaction kinetics resulting from the large radius of potassium ion(K+)insertion is critical for practical applications of potassium-ion batteries(PIBs).Herein,a superior anode material featuring an intriguing hierarchical structure where assembled MoSSe nanosheets are tightly anchored on a highly porous micron-sized carbon sphere and encapsulated within a thin carbon layer(denoted as Cs@MoSSe@C)is reported,which can significantly boost the performance of PIBs.The assembled MoSSe nanosheets with expanded interlayer spacing and rich anion vacancy can facilitate the intercalation/deintercalation of K+and guarantee abundant active sites together with a low K+diffusion barrier.Meanwhile,the thin carbon protective layer and the highly porous carbon sphere matrix can alleviate the volume expansion and enhance the charge transport within the composite.Under these merits,the as-prepared Cs@MoSSe@C anode exhibits a high reversible capacity(431.8 mAh g^(-1) at 0.05 A g^(-1)),good rate capability(161 mAh g^(-1) at 5 A g^(-1)),and superior cyclic performance(70.5%capacity retention after 600 cycles at 1 A g^(-1)),outperforming most existing Mo-based S/Se anodes.The underlying mechanisms and origins of superior performance are elucidated by a set of correlated in-situ/ex-situ characterizations and theoretical calculations.Further,a PIB full cell based on Cs@MoSSe@C anode also exhibits an impressive electrochemical performance.This work provides some insights into developing high-performance PIBs anodes with transition-metal chalcogenides. 展开更多
关键词 Potassium-ion storage performance Electrode materials Potassium-ion batteries Transition-metal chalcogenides
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部