期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A gap-free and haplotype-resolved lemon genome provides insights into flavor synthesis and huanglongbing (HLB) tolerance 被引量:2
1
作者 Yixue Bao Ziyan Zeng +9 位作者 Wei Yao Xiao Chen mengwei jiang Akbar Sehrish Bo Wu Charles A.Powell Baoshan Chen Jianlong Xu Xingtan Zhang Muqing Zhang 《Horticulture Research》 SCIE CSCD 2023年第4期13-22,共10页
The lemon(Citrus limon;family Rutaceae)is one of the most important and popular fruits worldwide.Lemon also tolerates huan-glongbing(HLB)disease,which is a devastating citrus disease.Here we produced a gap-free and ha... The lemon(Citrus limon;family Rutaceae)is one of the most important and popular fruits worldwide.Lemon also tolerates huan-glongbing(HLB)disease,which is a devastating citrus disease.Here we produced a gap-free and haplotype-resolved chromosome-scale genome assembly of the lemon by combining Pacific Biosciences circular consensus sequencing,Oxford Nanopore 50-kb ultra-long,and high-throughput chromatin conformation capture technologies.The assembly contained nine-pair chromosomes with a contig N50 of 35.6 Mb and zero gaps,while a total of 633.0 Mb genomic sequences were generated.The origination analysis identified 338.5Mb genomic sequences originating from citron(53.5%),147.4Mb frommandarin(23.3%),and 147.1Mb frompummelo(23.2%).The genome included 30528 protein-coding genes,and most of the assembled sequences were found to be repetitive sequences.Several significantly expanded gene families were associated with plant-pathogen interactions,plant hormone signal transduction,and the biosynthesis of major active components,such as terpenoids and f lavor compounds.Most HLB-tolerant genes were expanded in the lemon genome,such as 2-oxoglutarate(2OG)/Fe(II)-dependent oxygenase and constitutive disease resistance 1,cell wall-related genes,and lignin synthesis genes.Comparative transcriptomic analysis showed that phloem regeneration and lower levels of phloem plugging are the elements that contribute to HLB tolerance in lemon.Our results provide insight into lemon genome evolution,active component biosynthesis,and genes associated with HLB tolerance. 展开更多
关键词 SYNTHESIS insight RESOLVED
下载PDF
5mC DNA methylation modification-mediated regulation in tissue functional differentiation and important flavor substance synthesis of tea plant (Camellia sinensis L.) 被引量:1
2
作者 Weilong Kong Qiufang Zhu +8 位作者 Qing Zhang Yiwang Zhu Jingjing Yang Kun Chai Wenlong Lei mengwei jiang Shengcheng Zhang Jinke Lin Xingtan Zhang 《Horticulture Research》 SCIE CSCD 2023年第8期109-121,共13页
In plants,5mC DNA methylation is an important and conserved epistatic mark involving genomic stability,gene transcriptional regulation,developmental regulation,abiotic stress response,metabolite synthesis,etc.However,... In plants,5mC DNA methylation is an important and conserved epistatic mark involving genomic stability,gene transcriptional regulation,developmental regulation,abiotic stress response,metabolite synthesis,etc.However,the roles of 5mC DNA methylation modification(5mC methylation)in tea plant growth and development(in pre-harvest processing)and flavor substance synthesis in pre-and post-harvest processing are unknown.We therefore conducted a comprehensive methylation analysis of four key pre-harvest tissues(root,leaf,flower,and fruit)and two processed leaves during oolong tea post-harvest processing.We found that differential 5mC methylation among four key tissues is closely related to tissue functional differentiation and that genes expressed tissue-specifically,responsible for tissue-specific functions,maintain relatively low 5mC methylation levels relative to non-tissue-specifically expressed genes.Importantly,hypomethylation modifications of CsAlaDC and TS/GS genes in roots provided the molecular basis for the dominant synthesis of theanine in roots.In addition,integration of 5mC DNA methylationomics,metabolomics,and transcriptomics of post-harvest leaves revealed that content changes in flavor metabolites during oolong tea processing were closely associated with transcription level changes in corresponding metabolite synthesis genes,and changes in transcript levels of these important synthesis genes were strictly regulated by 5mC methylation.We further report that some key genes during processing are regulated by 5mC methylation,which can effectively explain the content changes of important aroma metabolites,includingα-farnesene,nerolidol,lipids,and taste substances such as catechins.Our results not only highlight the key roles of 5mC methylation in important flavor substance synthesis in pre-and post-harvest processing,but also provide epimutation-related gene targets for future improvement of tea quality or breeding of whole-tissue high-theanine varieties. 展开更多
关键词 synthesis FUNCTIONAL ROOTS
下载PDF
The haplotype-resolved autotetraploid genome assembly provides insights into the genomic evolution and fruit divergence in wax apple(Syzygium samarangense(Blume)Merr.and Perry)
3
作者 Xiuqing Wei Min Chen +8 位作者 Xijuan Zhang Yinghao Wang Liang Li Ling Xu Huanhuan Wang mengwei jiang Caihui Wang Lihui Zeng Jiahui Xu 《Horticulture Research》 SCIE CSCD 2023年第12期108-119,共12页
Wax apple(Syzygium samarangense)is an economically important fruit crop with great potential value to human health because of its richness in antioxidant substances.Here,we present a haplotype-resolved autotetraploid ... Wax apple(Syzygium samarangense)is an economically important fruit crop with great potential value to human health because of its richness in antioxidant substances.Here,we present a haplotype-resolved autotetraploid genome assembly of the wax apple with a size of 1.59 Gb.Comparative genomic analysis revealed three rounds of whole-genome duplication(WGD)events,including two independent WGDs after WGT-γ.Resequencing analysis of 35 accessions partitioned these individuals into two distinct groups,including 28 landraces and seven cultivated species,and several genes subject to selective sweeps possibly contributed to fruit growth,including the KRP1-like,IAA17-like,GME-like,and FLACCA-like genes.Transcriptome analysis of three different varieties during flower and fruit development identified key genes related to fruit size,sugar content,and male sterility.We found that AP2 also affected fruit size by regulating sepal development in wax apples.The expression of sugar transport-related genes(SWEETs and SUTs)was high in‘ZY’,likely contributing to its high sugar content.Male sterility in‘Tub’was associated with tapetal abnormalities due to the decreased expression of DYT1,TDF1,and AMS,which affected early tapetum development.The chromosome-scale genome and large-scale transcriptome data presented in this study offer new valuable resources for biological research on S.samarangense and shed new light on fruit size control,sugar metabolism,and male sterility regulatory metabolism in wax apple. 展开更多
关键词 metabolism sugar RESOLVED
下载PDF
Chromosome-scale genome sequence of Suaeda glauca sheds light on salt stress tolerance in halophytes
4
作者 Yan Cheng Jin Sun +18 位作者 mengwei jiang Ziqiang Luo Yu Wang Yanhui Liu Weiming Li Bing Hu Chunxing Dong Kangzhuo Ye Zixian Li Fang Deng Lulu Wang Ling Cao Shijiang Cao Chenglang Pan Ping Zheng Sheng Wang Mohammad Aslam Hong Wang Yuan Qin 《Horticulture Research》 SCIE CSCD 2023年第9期233-246,共14页
Soil salinity is a growing concern for global crop production and the sustainable development of humanity.Therefore,it is crucial to comprehend salt tolerance mechanisms and identify salt-tolerance genes to enhance cr... Soil salinity is a growing concern for global crop production and the sustainable development of humanity.Therefore,it is crucial to comprehend salt tolerance mechanisms and identify salt-tolerance genes to enhance crop tolerance to salt stress.Suaeda glauca,a halophyte species well adapted to the seawater environment,possesses a unique ability to absorb and retain high salt concentrations within its cells,particularly in its leaves,suggesting the presence of a distinct mechanism for salt tolerance.In this study,we performed de novo sequencing of the S.glauca genome.The genome has a size of 1.02 Gb(consisting of two sets of haplotypes)and contains 54761 annotated genes,including alleles and repeats.Comparative genomic analysis revealed a strong synteny between the genomes of S.glauca and Beta vulgaris.Of the S.glauca genome,70.56%comprises repeat sequences,with retroelements being the most abundant.Leveraging the allele-aware assembly of the S.glauca genome,we investigated genome-wide allele-specific expression in the analyzed samples.The results indicated that the diversity in promoter sequences might contribute to consistent allele-specific expression.Moreover,a systematic analysis of the ABCE gene families shed light on the formation of S.glauca’s flower morphology,suggesting that dysfunction of A-class genes is responsible for the absence of petals in S.glauca.Gene family expansion analysis demonstrated significant enrichment of Gene Ontology(GO)terms associated with DNA repair,chromosome stability,DNA demethylation,cation binding,and red/far-red light signaling pathways in the co-expanded gene families of S.glauca and S.aralocaspica,in comparison with glycophytic species within the chenopodium family.Time-course transcriptome analysis under salt treatments revealed detailed responses of S.glauca to salt tolerance,and the enrichment of the transition-upregulated genes in the leaves associated with DNA repair and chromosome stability,lipid biosynthetic process,and isoprenoid metabolic process.Additionally,genome-wide analysis of transcription factors indicated a significant expansion of FAR1 gene family.However,further investigation is needed to determine the exact role of the FAR1 gene family in salt tolerance in S.glauca. 展开更多
关键词 LIGHT expanded TOLERANCE
下载PDF
Nanopore sequencing of African swine fever virus
5
作者 Lijia Jia mengwei jiang +13 位作者 Ke Wu Juefu Hu Yang Wang Weipeng Quan Mengchan Hao Haizhou Liu Hongping Wei Wenhui Fan Wenjun Liu Rongliang Hu Depeng Wang Jing Li Jianjun Chen Di Liu 《Science China(Life Sciences)》 SCIE CAS CSCD 2020年第1期160-164,共5页
Dear Editor,African swine fever(ASF)is one of the most pathogenic viral diseases in pigs caused by African swine fever virus(ASFV).The fatality rate is almost 100%,which brings huge economic losses to the hog industry... Dear Editor,African swine fever(ASF)is one of the most pathogenic viral diseases in pigs caused by African swine fever virus(ASFV).The fatality rate is almost 100%,which brings huge economic losses to the hog industry in countries with epiepidemics(Galindo and Alonso,2017).China was the first Asian country to have an ASF epidemic,and it spread quickly across the country after the first epidemic was re・ported in August 2018(Ge et al.,2018).After that,Mongolia,Vietnam,Cambodia and North Korea also reported on the ASF epidemic in succession(OIE,2019). 展开更多
关键词 SWINE FEVER AFRICAN
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部