TiO_(2) has been considered as an ideal photocatalyst for water splitting.However,narrow light absorbance,low charge separation efficiency,and rare surface active sites lead to the low photocatalytic efficiency of TiO...TiO_(2) has been considered as an ideal photocatalyst for water splitting.However,narrow light absorbance,low charge separation efficiency,and rare surface active sites lead to the low photocatalytic efficiency of TiO_(2).Although extensive research attempted to improve the situation,there is still lack of method for constructing high active and noble-metal-free TiO_(2) photocatalyst for H_(2) evolution reactions(HER).In this work,we loaded single atomic(SA)Ni(or Co)on the surface of anatase TiO_(2)(TiO_(2)(A))nanosheets by an isolation strategy.Ethylene diamine tetraacetic acid and ethylene glycol(EDTA-EG)compounds were used to chelate metal ions in solution and form carbon quantum dots in the following thermal treatment to isolate the metal ions on surface of TiO_(2)(A).The prepared Ni SA/TiO_(2)(A)catalyst owned a“skin wrapped body”structure with in-situ formed twodimensional(2D)heterojunction facilitating the fast electron transfer.As a result,the Ni SA/TiO_(2)(A)catalyst showed a high H_(2) evolution rate of 2,900μmol·g−1·h−1.This work provides an isolation strategy for constructing promising single-atom metal catalyst for photocatalysis and beyond.展开更多
基金the Strategic Emerging Industry Development Funds of Shenzhen(No.JCYJ20170817161720484).
文摘TiO_(2) has been considered as an ideal photocatalyst for water splitting.However,narrow light absorbance,low charge separation efficiency,and rare surface active sites lead to the low photocatalytic efficiency of TiO_(2).Although extensive research attempted to improve the situation,there is still lack of method for constructing high active and noble-metal-free TiO_(2) photocatalyst for H_(2) evolution reactions(HER).In this work,we loaded single atomic(SA)Ni(or Co)on the surface of anatase TiO_(2)(TiO_(2)(A))nanosheets by an isolation strategy.Ethylene diamine tetraacetic acid and ethylene glycol(EDTA-EG)compounds were used to chelate metal ions in solution and form carbon quantum dots in the following thermal treatment to isolate the metal ions on surface of TiO_(2)(A).The prepared Ni SA/TiO_(2)(A)catalyst owned a“skin wrapped body”structure with in-situ formed twodimensional(2D)heterojunction facilitating the fast electron transfer.As a result,the Ni SA/TiO_(2)(A)catalyst showed a high H_(2) evolution rate of 2,900μmol·g−1·h−1.This work provides an isolation strategy for constructing promising single-atom metal catalyst for photocatalysis and beyond.