期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effects of Fertility and Density on Biomass Production,Translocation and Lodging Resistance of Millet(Setaria italica L.)in North China 被引量:2
1
作者 Qing ZHAO Guoshun ZHAO +2 位作者 mengya yang Susheng CHEN Kai XIAO 《Agricultural Biotechnology》 CAS 2018年第5期58-63,66,共7页
In this study, the plant biomass production, biomass translocation rates across tissues and the lodging resistant-associated traits of millet ( Setaria italica L.) in North China were investigated. Among the four su... In this study, the plant biomass production, biomass translocation rates across tissues and the lodging resistant-associated traits of millet ( Setaria italica L.) in North China were investigated. Among the four summer millet cultivars, Baogu 19 exhibited improved plant biomass (PB) production at flowering and maturity stages, biomass translocation amount (BTA) from vegetative tissues to seeds during filling period, and lodging resistant-associated (LRA) traits compared with other cultivars, including enhanced stem lignin contents, increased anti-broken resistance (ABR), anti-puncturing resistance (APR), and stem diameter (SD) of plants. Compared with treatment regular cultivation (RC), high fertility treatment (HF) increased the plant BP, BTA from vegetative tissue to seed at filling stage, and the plant LRA traits; whereas high density treatment (HD) decreased the plant BP at plant level, plant BTA from vegetative tissues to seeds at filling stage, and the plant LRA traits. Correlation analysis revealed that stem ABR is significantly correlated with the plant lodging resistant-associated traits including APR and SD in the summer millet cultivars examined under various cultivation treatments. Our investigation indicates that cultivar Baogu 19 together with suitable fertilization and density can promote the plant biomass production, enhance vegetative tissue biomass translocation to seeds, and improve the lodging resistance of summer millet plants in North China. 展开更多
关键词 Millet Setaria italica L.) cultivation condition plant biomass biomass translocation rate anti-lodging resistance
下载PDF
Effects of Biogas Slurry Recirculation on Anaerobic Digestion Performance of Maize Straw Silage
2
作者 Xinhe LIU Nan LI +4 位作者 mengya yang Benyue ZHANG Guangbo XU Renzhe PIAO Hongyan ZHAO 《Asian Agricultural Research》 2018年第12期49-51,54,共4页
In order to investigate the effects of slurry recirculation technology on anaerobic digestion performance of maize straw silage,maize straw silage was fermented with recirculated biogas slurry,and the gas production,p... In order to investigate the effects of slurry recirculation technology on anaerobic digestion performance of maize straw silage,maize straw silage was fermented with recirculated biogas slurry,and the gas production,p H value,methane content,volatile organic acids( VFAs)contents,chemical oxygen demand( COD) removal rate and other indicators were studied. The results showed that the fermentation time was positively correlated with daily gas production,methane content,cumulative gas production,VFAs and COD removal rate. Although the p H value fluctuated,it was still in the normal reaction range. The daily gas production was about 1. 26 L. The acetic acid content increased first,then decreased,then increased,and finally stabilized. The biogas slurry recirculation technology saves water resources by 40 m L/d without affecting the normal gas production of anaerobic fermentation,and reduces the consumption of environmental resources. It has important development significance for the sustainable use of biomass resources. 展开更多
关键词 BIOGAS slurry recirculation Maize STRAW SILAGE Anaerobic DIGESTION PERFORMANCE Biomass resources
下载PDF
Effects of Nitrogen Amount on the Photosynthesis Parameters of Summer Millet in North China
3
作者 Qing ZHAO Guoshun ZHAO +2 位作者 mengya yang Susheng CHEN Kai XIAO 《Agricultural Biotechnology》 CAS 2018年第3期19-23,共5页
In this study,effects of nitrogen( N) amount applied on photosynthesis behaviors of the summer millet in North China was investigated. Photosynthetic rates( Pn),chlorophyll contents( Chl),photosynthetic active d... In this study,effects of nitrogen( N) amount applied on photosynthesis behaviors of the summer millet in North China was investigated. Photosynthetic rates( Pn),chlorophyll contents( Chl),photosynthetic active duration( PAD),and chlorophyll relative steady phase( RSP) in flag and the upper third leaves were assessed in cultivars of Baogu 19,Jigu 19,9050,and 60 D under three N treatments [i. e.,0( control),75,and 150 kg/hm2]. Results indicated that the photosynthesis parameters were drastically regulated by external N levels,all of them showing elevation along with the increased N input in both assayed leaves.Among the cultivars examined,behaviors of the photosynthetic parameters were much better in Baogu 19 and worse in 60 D. The plant yields in the cultivars under various N treatments were shown to be in consistent with the behavior of the photosynthesis parameters. Correlation analysis revealed that plant yield is positively correlated with Pn and Chl and significantly positively correlated with PAD and RSP,suggesting that longer effective photosynthetic duration of leaves impacts largely on plant biomass production and the yield formation potential. Our investigation indicates that suitable external N applied can increase the yield of summer millet associating with the improvement of photosynthesis behaviors in upper leaves that contribute to plant biomass at the late growth stage. Baogu 19 exhibited higher plant yield together with improved photosynthetic parameters in upper leaves,suggesting its potential as an elite cultivar in planting in the summer season of North China. 展开更多
关键词 Millet (Setaria italica L. Summer-sown eultivar N application level Photosynthesis parameter Plant productivity
下载PDF
氨基酸生产的代谢工程研究进展与发展趋势 被引量:10
4
作者 马倩 夏利 +4 位作者 谭淼 孙全伟 杨蒙雅 张颖 陈宁 《生物工程学报》 CAS CSCD 北大核心 2021年第5期1677-1696,共20页
氨基酸发酵是我国发酵工业的支柱产业,近年来,随着代谢工程的快速发展,氨基酸的代谢工程育种蓬勃发展。传统的正向代谢工程、基于组学分析与计算机模拟的反向代谢工程以及借鉴自然进化的进化代谢工程,都有越来越多的应用。在氨基酸的工... 氨基酸发酵是我国发酵工业的支柱产业,近年来,随着代谢工程的快速发展,氨基酸的代谢工程育种蓬勃发展。传统的正向代谢工程、基于组学分析与计算机模拟的反向代谢工程以及借鉴自然进化的进化代谢工程,都有越来越多的应用。在氨基酸的工业生产中涌现出了一系列具有高效生产、抗逆性强等优良性状的菌株。日益剧烈的市场竞争对菌株的选育提出了新的要求,如开发高附加值氨基酸品种、菌株代谢的动态调控、适应新工艺的要求等。文中介绍了氨基酸生产相关的代谢工程研究进展以及未来的发展趋势。 展开更多
关键词 氨基酸 代谢工程 大肠杆菌 谷氨酸棒杆菌 生物传感器
原文传递
Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media 被引量:8
5
作者 mengya yang Long Jiao +7 位作者 Huilong Dong Liujiang Zhou Changqing Teng Dongming Yan Tian-Nan Ye Xiaoxin Chen Yi Liu Hai-Long Jiang 《Science Bulletin》 SCIE EI CSCD 2021年第3期257-264,M0004,共9页
The rational design and construction of inexpensive and highly active electrocatalysts for hydrogen evolution reaction(HER)is of great importance for water splitting.Herein,we develop a facile approach for preparation... The rational design and construction of inexpensive and highly active electrocatalysts for hydrogen evolution reaction(HER)is of great importance for water splitting.Herein,we develop a facile approach for preparation of porous carbon-confined Ru-doped Cu nanoparticles(denoted as Ru-Cu@C)by direct pyrolysis of the Ru-exchanged Cu-BTC metal–organic framework.When served as the electrocatalyst for HER,strikingly,the obtained Ru-Cu@C catalyst exhibits an ultralow overpotential(only 20 mV at 10 mA cm^(-2))with a small Tafel slope of 37 m V dec^(-1)in alkaline electrolyte.The excellent performance is comparable or even superior to that of commercial Pt/C catalyst.Density functional theory(DFT)calculations confirm that introducing Ru atoms into Cu nanocrystals can significantly alter the desorption of H_(2) to achieve a close-to-zero hydrogen adsorption energy and thereby boost the HER process.This strategy gives a fresh impetus to explore low-cost and high-performance catalysts for HER in alkaline media. 展开更多
关键词 Metal–organic framework Ru-doped Cu nanoparticles Hydrogen evolution reaction Alkaline media Hydrogen adsorption energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部