Deposition-precipitation(DP)method is commonly used to prepare the supported metal catalysts.In this study,the modification effect of the mild DP method on the photocatalytic performance of TiO_(2)was investigated.The...Deposition-precipitation(DP)method is commonly used to prepare the supported metal catalysts.In this study,the modification effect of the mild DP method on the photocatalytic performance of TiO_(2)was investigated.The TiO_(2)samples with DP treatment,as well as Au/TiO_(2)prepared under the same conditions,showed enhanced photocatalytic performance of the degradation of methylene blue(MB).·OH generated by photoexcited holes is identified as the main intermediate reactive species during the degradation reaction.X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)show that TiO_(2)(A)-17 after DP treatment has the most amount of surface OH^(-)_(ad)species.The presence of surface OH^(-)_(ad)species not only changes the surface zeta potential,favoring the attraction of cationic MB;but also depresses the electron-hole recombination,favoring photodegradation of MB by hole-produced·OH.An implication of these findings is that the modification of support properties should be taken into account while preparing supported metal catalysts using DP methods.展开更多
基金supported by the National Key Research and Development Program of China(No.2021YFA1500403)the National Natural Science Foundation of China(No.21773047 and No.U1832180)partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.
文摘Deposition-precipitation(DP)method is commonly used to prepare the supported metal catalysts.In this study,the modification effect of the mild DP method on the photocatalytic performance of TiO_(2)was investigated.The TiO_(2)samples with DP treatment,as well as Au/TiO_(2)prepared under the same conditions,showed enhanced photocatalytic performance of the degradation of methylene blue(MB).·OH generated by photoexcited holes is identified as the main intermediate reactive species during the degradation reaction.X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)show that TiO_(2)(A)-17 after DP treatment has the most amount of surface OH^(-)_(ad)species.The presence of surface OH^(-)_(ad)species not only changes the surface zeta potential,favoring the attraction of cationic MB;but also depresses the electron-hole recombination,favoring photodegradation of MB by hole-produced·OH.An implication of these findings is that the modification of support properties should be taken into account while preparing supported metal catalysts using DP methods.