Poststro ke cognitive impairment is a major secondary effect of ischemic stroke in many patients;however,few options are available for the early diagnosis and treatment of this condition.The aims of this study were to...Poststro ke cognitive impairment is a major secondary effect of ischemic stroke in many patients;however,few options are available for the early diagnosis and treatment of this condition.The aims of this study were to(1)determine the specific relationship between hypoxic andα-synuclein during the occur of poststroke cognitive impairment and(2)assess whether the serum phosphorylatedα-synuclein level can be used as a biomarker for poststro ke cognitive impairment.We found that the phosphorylatedα-synuclein level was significantly increased and showed pathological aggregation around the cerebral infa rct area in a mouse model of ischemic stroke.In addition,neuronalα-synuclein phosphorylation and aggregation were observed in the brain tissue of mice subjected to chronic hypoxia,suggesting that hypoxia is the underlying cause ofα-synuclein-mediated pathology in the brains of mice with ischemic stroke.Serum phosphorylatedα-synuclein levels in patients with ischemic stroke were significantly lower than those in healt hy subjects,and were positively correlated with cognition levels in patients with ischemic stroke.Furthermore,a decrease in serum high-density lipoprotein levels in stroke patie nts was significantly correlated with a decrease in phosphorylatedα-synuclein levels.Although ischemic stroke mice did not show significant cognitive impairment or disrupted lipid metabolism 14 days after injury,some of them exhibited decreased cognitive function and reduced phosphorylatedα-synuclein levels.Taken together,our results suggest that serum phosphorylatedα-synuclein is a potential biomarker for poststroke cognitive impairment.展开更多
Intestinal dysbiosis and disrupted bile acid(BA)homeostasis are associated with obesity,but the precise mechanisms remain insufficiently explored.Hepatic protein phosphatase 1 regulatory subunit 3G(PPP1R3G)plays a piv...Intestinal dysbiosis and disrupted bile acid(BA)homeostasis are associated with obesity,but the precise mechanisms remain insufficiently explored.Hepatic protein phosphatase 1 regulatory subunit 3G(PPP1R3G)plays a pivotal role in regulating glycolipid metabolism;nevertheless,its obesity-combatting potency remains unclear.In this study,a substantial reduction was observed in serum PPP1R3G levels in high-body mass index(BMI)and high-fat diet(HFD)-exposed mice,establishing a positive correlation between PPP1R3G and non-12a-hydroxylated(non-12-OH)BA content.Additionally,hepatocyte-specific overexpression of Ppp1r3g(PPP1R3G HOE)mitigated HFD-induced obesity as evidenced by reduced weight,fat mass,and an improved serum lipid profile;hepatic steatosis alleviation was confirmed by normalized liver enzymes and histology.PPP1R3G HOE considerably impacted systemic BA homeostasis,which notably increased the non-12-OH BAs ratio,particularly lithocholic acid(LCA).16S ribosomal DNA(16S rDNA)sequencing assay indicated that PPP1R3G HOE reversed HFD-induced gut dysbiosis by reducing the Firmicutes/Bacteroidetes ratio and Lactobacillus population,and elevating the relative abundance of Blautia,which exhibited a positive correlation with serum LCA levels.A fecal microbiome transplantation test confirmed that the anti-obesity effect of hepatic PPP1R3G was gut microbiotadependent.Mechanistically,PPP1R3G HOE markedly suppressed hepatic cholesterol 7a-hydroxylase(CYP7A1)and sterol-12a-hydroxylase(CYP8B1),and concurrently upregulated oxysterol 7-a hydroxylase and Takeda G protein-coupled BA receptor 5(TGR5)expression under HFD conditions.Furthermore,LCA administration significantly mitigated the HFD-induced obesity phenotype and elevated non-12-OH BA levels.These findings emphasize the significance of hepatic PPP1R3G in ameliorating diet-induced adiposity and hepatic steatosis through the gut microbiota-BA axis,which may serve as potential therapeutic targets for obesity-related disorders.展开更多
This review discusses the functions of blood vessels such as coagulation,regulation,immunity,endocrinology,and nerve conduction from a new perspective and suggests that hypoxia plays a common role in the changes in va...This review discusses the functions of blood vessels such as coagulation,regulation,immunity,endocrinology,and nerve conduction from a new perspective and suggests that hypoxia plays a common role in the changes in vascular function in various cardiovascular and cerebrovascular diseases.Therefore,it is oxygen therapy regulation may be a particularly beneficial means by which to regulate vascular function due to its low risk of harm and ease of implementation.Further,the authors have identified a link between vascular function and diseases caused by endogenous hypoxia and analyzed it in depth.The potential effects of hypoxia regulation schemes such as hyperxia,hyperoxic-hypoxia alternations,hypoxia preconditioning,and intermittent hypoxia on vascular function are also discussed,and we present theoretical support for targeted vascular therapy.展开更多
Fast walking and jogging are two common exercises for people to maintain health in daily life.But the differences in loading patterns of fast walking and jogging are still unclear.The purpose of this study was to comp...Fast walking and jogging are two common exercises for people to maintain health in daily life.But the differences in loading patterns of fast walking and jogging are still unclear.The purpose of this study was to compare loading patterns in fast walking and jogging at the same speed,and to identify how differences in foot mechanics influence plantar pressure distribution between the two modes of gait.Totally,49 healthy males participated in this study.Data of pressure parameters,including maximum force(MF),peak pressure(PP),contact area(CA),force-time integral(FTI),were recorded by Pedar-X insole plantar pressure measurement system in participants’fast walking and jogging process at 7 km/h.A Load transfer analysis method was used to quantify the plantar load transference from fast walking to jogging.The results showed that MF,PP and CA increased in metatarsal regions and midfoot regions while decreased in toes regions and heel during jogging when compared with fast walking.FTI decreased in all foot regions during jogging compared to fast walking.Under the effects of spring mechanics and the varus of rearfoot during jogging,fast walking and jogging reveal different loading patterns.Compared jogging to fast walking,load transferred as follow:1)in transverse direction,load transferred from lateral foot to medial foot in metatarsal regions and midfoot regions,2)in longitudinal direction,load transferred from toes to the metatarsal,and from heel to the metatarsal and midfoot.These results also provide suggestions for footwear designs.展开更多
基金supported by the Scientific Research Project of China Rehabilitation Research Center,No.2021zx-23the National Natural Science Foundation of China,No.32100925the Beijing Nova Program,No.Z211100002121038。
文摘Poststro ke cognitive impairment is a major secondary effect of ischemic stroke in many patients;however,few options are available for the early diagnosis and treatment of this condition.The aims of this study were to(1)determine the specific relationship between hypoxic andα-synuclein during the occur of poststroke cognitive impairment and(2)assess whether the serum phosphorylatedα-synuclein level can be used as a biomarker for poststro ke cognitive impairment.We found that the phosphorylatedα-synuclein level was significantly increased and showed pathological aggregation around the cerebral infa rct area in a mouse model of ischemic stroke.In addition,neuronalα-synuclein phosphorylation and aggregation were observed in the brain tissue of mice subjected to chronic hypoxia,suggesting that hypoxia is the underlying cause ofα-synuclein-mediated pathology in the brains of mice with ischemic stroke.Serum phosphorylatedα-synuclein levels in patients with ischemic stroke were significantly lower than those in healt hy subjects,and were positively correlated with cognition levels in patients with ischemic stroke.Furthermore,a decrease in serum high-density lipoprotein levels in stroke patie nts was significantly correlated with a decrease in phosphorylatedα-synuclein levels.Although ischemic stroke mice did not show significant cognitive impairment or disrupted lipid metabolism 14 days after injury,some of them exhibited decreased cognitive function and reduced phosphorylatedα-synuclein levels.Taken together,our results suggest that serum phosphorylatedα-synuclein is a potential biomarker for poststroke cognitive impairment.
基金supported by the Natural Science Foundation for Young Scientists of China(Grant No.:82201545)the Natural Science Foundation of Jiangsu Province,China(Grant No.:BK20221221)+4 种基金the Practice Innovation Program of Jiangsu Province,China(Grant No.:KYCX21_2641)the Medical Science Foundation of Jiangsu Province,China(Grant No.:H2019007)the Key Medical Talents Training Project of Xuzhou,China(Grant No.:XWRCHT20220060)the Xuzhou“Pengcheng Talent”Youth Medical Reserve Talent Project,China(Grant No.:XWRCHT20220014)the Science and Technology Projects of Xuzhou,China(Grant No.:KC21061).
文摘Intestinal dysbiosis and disrupted bile acid(BA)homeostasis are associated with obesity,but the precise mechanisms remain insufficiently explored.Hepatic protein phosphatase 1 regulatory subunit 3G(PPP1R3G)plays a pivotal role in regulating glycolipid metabolism;nevertheless,its obesity-combatting potency remains unclear.In this study,a substantial reduction was observed in serum PPP1R3G levels in high-body mass index(BMI)and high-fat diet(HFD)-exposed mice,establishing a positive correlation between PPP1R3G and non-12a-hydroxylated(non-12-OH)BA content.Additionally,hepatocyte-specific overexpression of Ppp1r3g(PPP1R3G HOE)mitigated HFD-induced obesity as evidenced by reduced weight,fat mass,and an improved serum lipid profile;hepatic steatosis alleviation was confirmed by normalized liver enzymes and histology.PPP1R3G HOE considerably impacted systemic BA homeostasis,which notably increased the non-12-OH BAs ratio,particularly lithocholic acid(LCA).16S ribosomal DNA(16S rDNA)sequencing assay indicated that PPP1R3G HOE reversed HFD-induced gut dysbiosis by reducing the Firmicutes/Bacteroidetes ratio and Lactobacillus population,and elevating the relative abundance of Blautia,which exhibited a positive correlation with serum LCA levels.A fecal microbiome transplantation test confirmed that the anti-obesity effect of hepatic PPP1R3G was gut microbiotadependent.Mechanistically,PPP1R3G HOE markedly suppressed hepatic cholesterol 7a-hydroxylase(CYP7A1)and sterol-12a-hydroxylase(CYP8B1),and concurrently upregulated oxysterol 7-a hydroxylase and Takeda G protein-coupled BA receptor 5(TGR5)expression under HFD conditions.Furthermore,LCA administration significantly mitigated the HFD-induced obesity phenotype and elevated non-12-OH BA levels.These findings emphasize the significance of hepatic PPP1R3G in ameliorating diet-induced adiposity and hepatic steatosis through the gut microbiota-BA axis,which may serve as potential therapeutic targets for obesity-related disorders.
文摘This review discusses the functions of blood vessels such as coagulation,regulation,immunity,endocrinology,and nerve conduction from a new perspective and suggests that hypoxia plays a common role in the changes in vascular function in various cardiovascular and cerebrovascular diseases.Therefore,it is oxygen therapy regulation may be a particularly beneficial means by which to regulate vascular function due to its low risk of harm and ease of implementation.Further,the authors have identified a link between vascular function and diseases caused by endogenous hypoxia and analyzed it in depth.The potential effects of hypoxia regulation schemes such as hyperxia,hyperoxic-hypoxia alternations,hypoxia preconditioning,and intermittent hypoxia on vascular function are also discussed,and we present theoretical support for targeted vascular therapy.
基金supported by National Natural Science Foundation of China,grant number:11502154.
文摘Fast walking and jogging are two common exercises for people to maintain health in daily life.But the differences in loading patterns of fast walking and jogging are still unclear.The purpose of this study was to compare loading patterns in fast walking and jogging at the same speed,and to identify how differences in foot mechanics influence plantar pressure distribution between the two modes of gait.Totally,49 healthy males participated in this study.Data of pressure parameters,including maximum force(MF),peak pressure(PP),contact area(CA),force-time integral(FTI),were recorded by Pedar-X insole plantar pressure measurement system in participants’fast walking and jogging process at 7 km/h.A Load transfer analysis method was used to quantify the plantar load transference from fast walking to jogging.The results showed that MF,PP and CA increased in metatarsal regions and midfoot regions while decreased in toes regions and heel during jogging when compared with fast walking.FTI decreased in all foot regions during jogging compared to fast walking.Under the effects of spring mechanics and the varus of rearfoot during jogging,fast walking and jogging reveal different loading patterns.Compared jogging to fast walking,load transferred as follow:1)in transverse direction,load transferred from lateral foot to medial foot in metatarsal regions and midfoot regions,2)in longitudinal direction,load transferred from toes to the metatarsal,and from heel to the metatarsal and midfoot.These results also provide suggestions for footwear designs.