Biogeographical barriers to gene flow are central to plant phylogeography.In East Asia,plant distribution is greatly influenced by two phylogeographic breaks,the Mekong-Salween Divide and Tanaka-Kaiyong Line,however,f...Biogeographical barriers to gene flow are central to plant phylogeography.In East Asia,plant distribution is greatly influenced by two phylogeographic breaks,the Mekong-Salween Divide and Tanaka-Kaiyong Line,however,few studies have investigated how these barriers affect the genetic diversity of species that are distributed across both.Here we used 14 microsatellite loci and four chloroplast DNA fragments to examine genetic diversity and distribution patterns of 49 populations of Populus rotundifolia,a species that spans both the Mekong-Salween Divide and the Tanaka-Kaiyong Line in southwestern China.Demographic and migration hypotheses were tested using coalescent-based approaches.Limited historical gene flow was observed between the western and eastern groups of P.rotundifolia,but substantial flow occurred across both the Mekong-Salween Divide and Tanaka-Kaiyong Line,manifesting in clear admixture and high genetic diversity in the central group.Wind-borne pollen and seeds may have facilitated the dispersal of P.rotundifolia following prevalent northwest winds in the spring.We also found that the Hengduan Mountains,where multiple genetic barriers were detected,acted on the whole as a barrier between the western and eastern groups of P.rotundifolia.Ecological niche modeling suggested that P.rotundifolia has undergone range expansion since the last glacial maximum,and demographic reconstruction indicated an earlier population expansion around 600 Ka.The phylogeographic pattern of P.rotundifolia reflects the interplay of biological traits,wind patterns,barriers,niche differentiation,and Quaternary climate history.This study emphasizes the need for multiple lines of evidence in understanding the Quaternary evolution of plants in topographically complex areas.展开更多
ACYL-CoA-BINDING PROTEINs(ACBPs)play crucial regulatory roles during plant response to hypoxia,but their molecular mechanisms remain poorly understood.Our study reveals that ACBP4 serves as a positive regulator of the...ACYL-CoA-BINDING PROTEINs(ACBPs)play crucial regulatory roles during plant response to hypoxia,but their molecular mechanisms remain poorly understood.Our study reveals that ACBP4 serves as a positive regulator of the plant hypoxia response by interacting with WRKY70,influencing its nucleocytoplasmic shuttling in Arabidopsis thaliana.Furthermore,we demonstrate the direct binding of WRKY70 to the ACBP4 promoter,resulting in its upregulation and suggesting a positive feedback loop.Additionally,we pinpointed a phosphorylation site at Ser638 of ACBP4,which enhances submergence tolerance,potentially by facilitating WRKY70's nuclear shuttling.Surprisingly,a natural variation in this phosphorylation site of ACBP4 allowed A.thaliana to adapt to humid conditions during its historical demographic expansion.We further observed that both phosphorylated ACBP4 and oleoyl-Co A can impede the interaction between ACBP4 and WRKY70,thus promoting WRKY70's nuclear translocation.Finally,we found that the overexpression of orthologous Bna C5.ACBP4and Bna A7.WRKY70 in Brassica napus increases submergence tolerance,indicating their functional similarity across genera.In summary,our research not only sheds light on the functional significance of the ACBP4 gene in hypoxia response,but also underscores its potential utility in breeding flooding-tolerant oilseed rape varieties.展开更多
基金funded by the National Natural Science Foundation of China(grants 41571054 and 31622015)the National Basic Research Program of China(grant 2014CB954100)+1 种基金Sichuan University(Fundamental Research Funds for the Central Universities,SCU2021D006 and SCU2022D003Institutional Research Funds,2021SCUNL102).
文摘Biogeographical barriers to gene flow are central to plant phylogeography.In East Asia,plant distribution is greatly influenced by two phylogeographic breaks,the Mekong-Salween Divide and Tanaka-Kaiyong Line,however,few studies have investigated how these barriers affect the genetic diversity of species that are distributed across both.Here we used 14 microsatellite loci and four chloroplast DNA fragments to examine genetic diversity and distribution patterns of 49 populations of Populus rotundifolia,a species that spans both the Mekong-Salween Divide and the Tanaka-Kaiyong Line in southwestern China.Demographic and migration hypotheses were tested using coalescent-based approaches.Limited historical gene flow was observed between the western and eastern groups of P.rotundifolia,but substantial flow occurred across both the Mekong-Salween Divide and Tanaka-Kaiyong Line,manifesting in clear admixture and high genetic diversity in the central group.Wind-borne pollen and seeds may have facilitated the dispersal of P.rotundifolia following prevalent northwest winds in the spring.We also found that the Hengduan Mountains,where multiple genetic barriers were detected,acted on the whole as a barrier between the western and eastern groups of P.rotundifolia.Ecological niche modeling suggested that P.rotundifolia has undergone range expansion since the last glacial maximum,and demographic reconstruction indicated an earlier population expansion around 600 Ka.The phylogeographic pattern of P.rotundifolia reflects the interplay of biological traits,wind patterns,barriers,niche differentiation,and Quaternary climate history.This study emphasizes the need for multiple lines of evidence in understanding the Quaternary evolution of plants in topographically complex areas.
基金the Natural Science Foundation of China(No.32270302 and No.32030006)the Fundamental Research Funds for the Central Universities(SCU2022D003)。
文摘ACYL-CoA-BINDING PROTEINs(ACBPs)play crucial regulatory roles during plant response to hypoxia,but their molecular mechanisms remain poorly understood.Our study reveals that ACBP4 serves as a positive regulator of the plant hypoxia response by interacting with WRKY70,influencing its nucleocytoplasmic shuttling in Arabidopsis thaliana.Furthermore,we demonstrate the direct binding of WRKY70 to the ACBP4 promoter,resulting in its upregulation and suggesting a positive feedback loop.Additionally,we pinpointed a phosphorylation site at Ser638 of ACBP4,which enhances submergence tolerance,potentially by facilitating WRKY70's nuclear shuttling.Surprisingly,a natural variation in this phosphorylation site of ACBP4 allowed A.thaliana to adapt to humid conditions during its historical demographic expansion.We further observed that both phosphorylated ACBP4 and oleoyl-Co A can impede the interaction between ACBP4 and WRKY70,thus promoting WRKY70's nuclear translocation.Finally,we found that the overexpression of orthologous Bna C5.ACBP4and Bna A7.WRKY70 in Brassica napus increases submergence tolerance,indicating their functional similarity across genera.In summary,our research not only sheds light on the functional significance of the ACBP4 gene in hypoxia response,but also underscores its potential utility in breeding flooding-tolerant oilseed rape varieties.