期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Design and fabrication of a vigorous“cavitation-on-a-chip”device with a multiple microchannel configuration
1
作者 Farzad Rokhsar Talabazar Mohammad Jafarpour +6 位作者 merve zuvin Hongjian Chen Moein Talebian Gevari Luis Guillermo Villanueva Dmitry Grishenkov Ali Koşar Morteza Ghorbani 《Microsystems & Nanoengineering》 EI CSCD 2021年第3期149-161,共13页
Hydrodynamic cavitation is one of the major phase change phenomena and occurs with a sudden decrease in the local static pressure within a fluid.With the emergence of microelectromechanical systems(MEMS),high-speed mi... Hydrodynamic cavitation is one of the major phase change phenomena and occurs with a sudden decrease in the local static pressure within a fluid.With the emergence of microelectromechanical systems(MEMS),high-speed microfluidic devices have attracted considerable attention and been implemented in many fields,including cavitation applications.In this study,a new generation of‘cavitation-on-a-chip’devices with eight parallel structured microchannels is proposed.This new device is designed with the motivation of decreasing the upstream pressure(input energy)required for facile hydrodynamic cavitation inception.Water and a poly(vinyl alcohol)(PVA)microbubble(MB)suspension are used as the working fluids.The results show that the cavitation inception upstream pressure can be reduced with the proposed device in comparison with previous studies with a single flow restrictive element.Furthermore,using PVA MBs further results in a reduction in the upstream pressure required for cavitation inception.In this new device,different cavitating flow patterns with various intensities can be observed at a constant cavitation number and fixed upstream pressure within the same device.Moreover,cavitating flows intensify faster in the proposed device for both water and the water–PVA MB suspension in comparison to previous studies.Due to these features,this next-generation‘cavitation-on-a-chip’device has a high potential for implementation in applications involving microfluidic/organ-on-a-chip devices,such as integrated drug release and tissue engineering. 展开更多
关键词 CAVITATION BUBBLE FASTER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部