This study aims to investigate the capacity of <i>Chrysopogon</i> <i>nigritanus</i> to accumulate As from contaminated soils<i>.</i><b> </b>The experiment was conducted ...This study aims to investigate the capacity of <i>Chrysopogon</i> <i>nigritanus</i> to accumulate As from contaminated soils<i>.</i><b> </b>The experiment was conducted in a greenhouse. <i>C.</i> <i>nigritanus</i> was subjected to uncontaminated soil and As contaminated soil (50 mg/kg, 100 mg/kg and 150 mg/kg of As), for 180 days. Plant growth and biomass produced, concentration of As in soil and plant, bioaccumulation and transfer factors, as the location of As in tissues and cells of the plant have been determined. Plant growth decreased significantly with increasing of soil As concentration. <i>C.</i> <i>nigritanus</i> accumulated more As in roots biomass. The highest bioaccumulation factor values were found in contaminated soil at 50 mg As/kg (As 50), then contaminated soil at 100 mg As/kg (As 100) and contaminated soil at 150 mg As/kg (As 150). As was essentially fixed to the intracellular compartment of the roots, stems and leaves. In roots tissues, As was mainly retained in the rhizodermis and the pericycle. While in stems tissues, As was preferentially accumulated in the conductive bundles. In the leaves, the final destination of As was epidermis tissues.展开更多
文摘This study aims to investigate the capacity of <i>Chrysopogon</i> <i>nigritanus</i> to accumulate As from contaminated soils<i>.</i><b> </b>The experiment was conducted in a greenhouse. <i>C.</i> <i>nigritanus</i> was subjected to uncontaminated soil and As contaminated soil (50 mg/kg, 100 mg/kg and 150 mg/kg of As), for 180 days. Plant growth and biomass produced, concentration of As in soil and plant, bioaccumulation and transfer factors, as the location of As in tissues and cells of the plant have been determined. Plant growth decreased significantly with increasing of soil As concentration. <i>C.</i> <i>nigritanus</i> accumulated more As in roots biomass. The highest bioaccumulation factor values were found in contaminated soil at 50 mg As/kg (As 50), then contaminated soil at 100 mg As/kg (As 100) and contaminated soil at 150 mg As/kg (As 150). As was essentially fixed to the intracellular compartment of the roots, stems and leaves. In roots tissues, As was mainly retained in the rhizodermis and the pericycle. While in stems tissues, As was preferentially accumulated in the conductive bundles. In the leaves, the final destination of As was epidermis tissues.