The Dabashan orocline is situated in the northwestern margin of the central Yangtze block,central China.Previous studies have defined the orthogonal superposed folds growing in its central-western segment thereby conf...The Dabashan orocline is situated in the northwestern margin of the central Yangtze block,central China.Previous studies have defined the orthogonal superposed folds growing in its central-western segment thereby confirming its two-stage tectonic evolution history.Geological mapping has revealed that more types of superposed folds have developed in the eastern segment of the orocline,which probably provides more clues for probing the structure and tectonic history of the Dabashan orocline.In this paper,based on geological mapping,structural measurements and analyses of deformation,we have identified three groups of folds with different trends (e.g.NW-,NE-and nearly E-trending folds) and three types of structural patterns of superposed folds in the eastern Dabashan foreland (e.g.syn-axial,oblique,and conjunctional superposed folds).In combination with geochronological data,we propose that the synaxial superposed folds are due to two stages of ~N-S shortening in the west and north of the Shennongjia massif,and that oblique superposed folds have been resulted from the superposition of the NW-and NE-trending folds onto the early ~ E-W folds in the east of the Shennongjia massif in the late Jurassic to early Cretaceous.The conjunctional folds are composed of the NW-and NE-trending folds,corresponding to the regional-scale dual-orocline in the eastern Sichuan as a result of the southwestward expansion of the Dabashan foreland during late Jurassic to early Cretaceous,coeval with the northwestward propagation of the Xuefengshan foreland.Integration of the structure and geochronology of the belt shows that the Dabashan orocline is a combined deformation belt primarily experiencing a twostage tectonic evolution history in Mesozoic,initiation of the Dabashan orocline as a foreland basin along the front of the Qinling orogen in late Triassic to early Jurassic due to collisional orogeny,and the final formation of the Dabashan orocline owing to the southwestward propagation of the Qinling orogen during late Jurassic to early Cretaceous intra-continental orogeny.Our studies provide some evidences for understanding the structure and deformation of the Dabashan orocline.展开更多
Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods...Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.展开更多
Novel catalytic systems for the Rh‐catalyzed hydroformylation of dicyclopentadiene have been developed using tris‐H8‐binaphthyl monophosphite as ligands containing different ester substituents at the 2’‐binaphthy...Novel catalytic systems for the Rh‐catalyzed hydroformylation of dicyclopentadiene have been developed using tris‐H8‐binaphthyl monophosphite as ligands containing different ester substituents at the 2’‐binaphthyl position(OCOMe,OCOPh,OCOAdamantyl and OCOPhCl).The catalysts exhibited high activity(S/C=4000,TON=3286)with good to excellent selectivity towards dialdehydes.Remarkably,the Rh(I)complex bearing the ligands with chlorophenyl ester substituents led to 99.9%conversion and 98.7%selectivity for dialdehydes under relatively mild conditions(6 MPa,120°C).展开更多
Decabromodiphenyl ether (decaBDE),as a flame retardant,is widely produced and used.To study the thyroid disruption by technical decaBDE at low concentrations,Xenopus laevis tadpoles were exposed to technical decaBDE...Decabromodiphenyl ether (decaBDE),as a flame retardant,is widely produced and used.To study the thyroid disruption by technical decaBDE at low concentrations,Xenopus laevis tadpoles were exposed to technical decaBDE mixture DE-83R (1-1000 ng/L) in water from stage 46/47 (free swimming larvae,system of Nieuwkoop and Faber) to stage 62.DE-83R at concentration of 1000 ng/L significantly delayed the time to metamorphosis (presented by forelimb emergence,FLE).Histological examination showed that DE83R at all tested concentrations caused histological alterations-multilayer follicular epithelial cell and markedly increased follicle size accompanied by partial colloid depletion and increase in the peripheral colloid vacuolation,in thyroid glands.All tested concentrations of DE-83R also induced a down-regulation of thyroid receptor mRNA expression.These results demonstrated that technical decaBDE disrupted the thyroid system in X.laevis tadpoles.Analysis of polybrominated diphenyl ethers (PBDEs) (sum of 39 congeners) in X.laevis indicated that mean concentrations of total PBDEs in X.laevis exposed to 1,10,100,1000 ng/L were 11.0,128.1,412.1,1400.2 ng/g wet weight,respectively.Considering that PBDEs burden of X.laevis tadpoles was close to PBDEs levels in amphibians as reported in previous studies,our study has raised new concerns for thyroid disruption in amphibians of technical decaBDE at environmentally relevant concentrations.展开更多
10 PW-class lasers irradiating overcritical plasmas in the quantum electrodynamics regime promise to generate ultrabrightγ-ray sources in the laboratory.Here using two-dimensional particle-in-cell simulations,we repo...10 PW-class lasers irradiating overcritical plasmas in the quantum electrodynamics regime promise to generate ultrabrightγ-ray sources in the laboratory.Here using two-dimensional particle-in-cell simulations,we report highly efficientγ-ray generation in the parameter regime of 10 PW-class lasers at an intensity level of 10^(23)W cm^(–2)interaction with heavy-ion plasmas which have large-scale preplasmas.The laser-to-γ-ray(>1 MeV)energy conversion efficiency reaches close to 60%with an above 10^(14)γ-photons/pulse.The averageγ-photon energy is about 14 MeV with the highest photon energy exceeding 1 GeV.The high-energyγ-photons are mainly directed in the forward direction.We also find that plane target geometry is efficient enough for high powerγ-ray radiation,which is beneficial for easing the difficulty of complex target manufacturing and alignment in experiments.展开更多
Background:Severe intracerebral hemorrhage(ICH)is the most devastating subtype of stroke resulting in high mortality and disability.At present,the development of targeted treatments to minimize the high morbidity and ...Background:Severe intracerebral hemorrhage(ICH)is the most devastating subtype of stroke resulting in high mortality and disability.At present,the development of targeted treatments to minimize the high morbidity and mortality is limited partly due to the lack of a severe ICH animal model.In this study,we aimed to establish an accurate severe ICH model in rats and examine the pathological and physiological changes associated with ICH.Methods:A rat model of severe ICH model was established by intrastriatal injection of autologous blood using different blood volumes(ICH 100μL group,ICH 130μL group,ICH 160μL group,ICH 170μL group,and ICH 180μL group).The mortality was assessed during the 28-day post-ICH period.Short-and long-term neurological deficits were evaluated using the Longa method,foot fault,falling latency,and Morris water maze tests.Brain water content,hematoma volume,hemoglobin content,and magnetic resonance imaging were assessed to determine the extent of brain injury.Immunofluorescence staining was conducted to examine microglial activation and neuronal apoptosis.Hematoxylin and eosin(H&E)staining,lung water content,and western blotting were used to assess lung injury following ICH.Results:The mortality of ICH rats increased significantly with an increase in autologous blood injection.The 28-day mortality in the 100μL,130μL,160μL,170μL,and 180μL ICH groups were 5%,20%,40%,75%,and 100%,respectively.A significantly higher 28-day mortality was observed in the ICH 160μL group compared to the ICH 100μL group.The ICH 160μL group exhibited significantly increased neurological deficits,brain edema,hematoma volume,and hemoglobin content compared to the sham group.Compared with the sham operation group,the activation of microglia and neuronal death in ICH 160μL rats increased.The use of H&E staining and western blotting demonstrated that disruption of the intra-alveolar structure,alveolar edema,and infiltration of inflammatory cells and cytokines into the lung tissue were more severe in the ICH 160μL group than the sham group.Conclusions:A severe ICH model in rats was successfully established using an injection of autologous blood at a volume of 160μL.This model may provide a valuable tool to examine the pathological mechanisms and potential therapeutic interventions of severe ICH.展开更多
The applications of hydrogels have expanded significantly due to their versatile,highly tunable properties and breakthroughs in biomaterial technologies.In this review,we cover the major achievements and the potential...The applications of hydrogels have expanded significantly due to their versatile,highly tunable properties and breakthroughs in biomaterial technologies.In this review,we cover the major achievements and the potential of hydrogels in therapeutic applications,focusing primarily on two areas:emerging cell-based therapies and promising non-cell therapeutic modalities.Within the context of cell therapy,we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms,provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy,as well as list specific examples of their applications in different disease scenarios.We then explore the potential of hydrogels in drug delivery,physical intervention therapies,and other non-cell therapeutic areas(e.g.,bioadhesives,artificial tissues,and biosensors),emphasizing their utility beyond mere delivery vehicles.Additionally,we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions,particularly in terms of integration with advanced biomanufacturing technologies.This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and noncell therapies,tailored to meet the therapeutic requirements of diverse diseases and situations.展开更多
The levels and distributions of polybrominated diphenyl ethers (PBDEs) in chicken tissues from an electronic waste (e-waste) recycling area in southeast China were investigated. Human dietary intake by local resid...The levels and distributions of polybrominated diphenyl ethers (PBDEs) in chicken tissues from an electronic waste (e-waste) recycling area in southeast China were investigated. Human dietary intake by local residents via chicken muscle and eggs was estimated. The mean PBDEs concentrations in tissues ranged from 15.2 to 3138.1 ng/g lipid weight (lw) and in egg the concentration was 563.5 ng/g lw. The results showed that the level of total PBDEs (∑PBDEs) in the chicken tissue was 2-3 orders of magnitude higher than those reported in the literature. The large difference of ∑PBDEs concentrations between tissues confirmed that the distribution of PBDEs in tissues depend on tissue-specificity rather than the "lipid-compartment". BDE-209 was the predominant congener (82.5%- 94.7% of ∑PBDEs) in all chicken tissues except in brain (34.7% of ∑PBDEs), which indicated that deca-BDE (the major commercial PBDE formulation comprising 65%-70% of total production) was major pollution source in this area and could be bioaccumulated in terrestrial animals. The dietary PBDEs intake of the local residents from chicken muscle and egg, assuming only local bred chickens and eggs were consumed, ranged from 2.2 to 22.5 ng/(day.kg body weight (bw)) with a mean value of 13.5 ng/(day-kg bw), which was one order of magnitude higher than the value reported in previous studies for consumption of all foodstuffs.展开更多
Progress in medicine such as the use of anti-infective drugs and development of the advanced life support equipment has greatly improved the survival rate of patients with sepsis.However,the incidence of sepsis-relate...Progress in medicine such as the use of anti-infective drugs and development of the advanced life support equipment has greatly improved the survival rate of patients with sepsis.However,the incidence of sepsis-relateddiseases is increasing.These include severe neurologic and psychologic disorders,cognitive decline,anxiety,depression,and post-traumatic stress disorder.Cerebral dysfunction occurs via multiple interacting mechanisms,with different causative pathogens having distinct effects.Because sepsis-related diseases place a substantial burden on patients and their families,it is important to elucidate the underlying pathophysiologic mechanisms todevelop effective treatments.展开更多
基金supported by National Natural Foundation of China(No.41172184)SINOPROBE-08-01SNOPEC(China)
文摘The Dabashan orocline is situated in the northwestern margin of the central Yangtze block,central China.Previous studies have defined the orthogonal superposed folds growing in its central-western segment thereby confirming its two-stage tectonic evolution history.Geological mapping has revealed that more types of superposed folds have developed in the eastern segment of the orocline,which probably provides more clues for probing the structure and tectonic history of the Dabashan orocline.In this paper,based on geological mapping,structural measurements and analyses of deformation,we have identified three groups of folds with different trends (e.g.NW-,NE-and nearly E-trending folds) and three types of structural patterns of superposed folds in the eastern Dabashan foreland (e.g.syn-axial,oblique,and conjunctional superposed folds).In combination with geochronological data,we propose that the synaxial superposed folds are due to two stages of ~N-S shortening in the west and north of the Shennongjia massif,and that oblique superposed folds have been resulted from the superposition of the NW-and NE-trending folds onto the early ~ E-W folds in the east of the Shennongjia massif in the late Jurassic to early Cretaceous.The conjunctional folds are composed of the NW-and NE-trending folds,corresponding to the regional-scale dual-orocline in the eastern Sichuan as a result of the southwestward expansion of the Dabashan foreland during late Jurassic to early Cretaceous,coeval with the northwestward propagation of the Xuefengshan foreland.Integration of the structure and geochronology of the belt shows that the Dabashan orocline is a combined deformation belt primarily experiencing a twostage tectonic evolution history in Mesozoic,initiation of the Dabashan orocline as a foreland basin along the front of the Qinling orogen in late Triassic to early Jurassic due to collisional orogeny,and the final formation of the Dabashan orocline owing to the southwestward propagation of the Qinling orogen during late Jurassic to early Cretaceous intra-continental orogeny.Our studies provide some evidences for understanding the structure and deformation of the Dabashan orocline.
基金supported by National Natural Science Foundation of China (21876168, 21507130)Youth Innovation Promotion Association of CAS (2019376)the Chongqing Science & Technology Commission (cstc2016jcyjA0070, cstckjcxljrc13)~~
文摘Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.
文摘Novel catalytic systems for the Rh‐catalyzed hydroformylation of dicyclopentadiene have been developed using tris‐H8‐binaphthyl monophosphite as ligands containing different ester substituents at the 2’‐binaphthyl position(OCOMe,OCOPh,OCOAdamantyl and OCOPhCl).The catalysts exhibited high activity(S/C=4000,TON=3286)with good to excellent selectivity towards dialdehydes.Remarkably,the Rh(I)complex bearing the ligands with chlorophenyl ester substituents led to 99.9%conversion and 98.7%selectivity for dialdehydes under relatively mild conditions(6 MPa,120°C).
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences(No. KZCX2-YW-420-3,KZCX2-YW-Q-02-05)the National Natural Science Foundation of China (No.20437020,20677074)
文摘Decabromodiphenyl ether (decaBDE),as a flame retardant,is widely produced and used.To study the thyroid disruption by technical decaBDE at low concentrations,Xenopus laevis tadpoles were exposed to technical decaBDE mixture DE-83R (1-1000 ng/L) in water from stage 46/47 (free swimming larvae,system of Nieuwkoop and Faber) to stage 62.DE-83R at concentration of 1000 ng/L significantly delayed the time to metamorphosis (presented by forelimb emergence,FLE).Histological examination showed that DE83R at all tested concentrations caused histological alterations-multilayer follicular epithelial cell and markedly increased follicle size accompanied by partial colloid depletion and increase in the peripheral colloid vacuolation,in thyroid glands.All tested concentrations of DE-83R also induced a down-regulation of thyroid receptor mRNA expression.These results demonstrated that technical decaBDE disrupted the thyroid system in X.laevis tadpoles.Analysis of polybrominated diphenyl ethers (PBDEs) (sum of 39 congeners) in X.laevis indicated that mean concentrations of total PBDEs in X.laevis exposed to 1,10,100,1000 ng/L were 11.0,128.1,412.1,1400.2 ng/g wet weight,respectively.Considering that PBDEs burden of X.laevis tadpoles was close to PBDEs levels in amphibians as reported in previous studies,our study has raised new concerns for thyroid disruption in amphibians of technical decaBDE at environmentally relevant concentrations.
基金supported in part by the National Key Laboratory of Shock Wave and Detonation Physics(No.JCKYS2020212015)National Natural Science Foundation of China(No.12175157)the Fundamental Research Funds for the Central Universities(No.YJ202025)。
文摘10 PW-class lasers irradiating overcritical plasmas in the quantum electrodynamics regime promise to generate ultrabrightγ-ray sources in the laboratory.Here using two-dimensional particle-in-cell simulations,we report highly efficientγ-ray generation in the parameter regime of 10 PW-class lasers at an intensity level of 10^(23)W cm^(–2)interaction with heavy-ion plasmas which have large-scale preplasmas.The laser-to-γ-ray(>1 MeV)energy conversion efficiency reaches close to 60%with an above 10^(14)γ-photons/pulse.The averageγ-photon energy is about 14 MeV with the highest photon energy exceeding 1 GeV.The high-energyγ-photons are mainly directed in the forward direction.We also find that plane target geometry is efficient enough for high powerγ-ray radiation,which is beneficial for easing the difficulty of complex target manufacturing and alignment in experiments.
基金supported by a grant from the Shanghai Hospital Development Center(SHDC2020CR3021A to YG)the Science and Technology Commission of Shanghai Municipality(21ZR1410700 to S.D.)the National Natural Science Foun-dation of China(82101536 to S.D.).
文摘Background:Severe intracerebral hemorrhage(ICH)is the most devastating subtype of stroke resulting in high mortality and disability.At present,the development of targeted treatments to minimize the high morbidity and mortality is limited partly due to the lack of a severe ICH animal model.In this study,we aimed to establish an accurate severe ICH model in rats and examine the pathological and physiological changes associated with ICH.Methods:A rat model of severe ICH model was established by intrastriatal injection of autologous blood using different blood volumes(ICH 100μL group,ICH 130μL group,ICH 160μL group,ICH 170μL group,and ICH 180μL group).The mortality was assessed during the 28-day post-ICH period.Short-and long-term neurological deficits were evaluated using the Longa method,foot fault,falling latency,and Morris water maze tests.Brain water content,hematoma volume,hemoglobin content,and magnetic resonance imaging were assessed to determine the extent of brain injury.Immunofluorescence staining was conducted to examine microglial activation and neuronal apoptosis.Hematoxylin and eosin(H&E)staining,lung water content,and western blotting were used to assess lung injury following ICH.Results:The mortality of ICH rats increased significantly with an increase in autologous blood injection.The 28-day mortality in the 100μL,130μL,160μL,170μL,and 180μL ICH groups were 5%,20%,40%,75%,and 100%,respectively.A significantly higher 28-day mortality was observed in the ICH 160μL group compared to the ICH 100μL group.The ICH 160μL group exhibited significantly increased neurological deficits,brain edema,hematoma volume,and hemoglobin content compared to the sham group.Compared with the sham operation group,the activation of microglia and neuronal death in ICH 160μL rats increased.The use of H&E staining and western blotting demonstrated that disruption of the intra-alveolar structure,alveolar edema,and infiltration of inflammatory cells and cytokines into the lung tissue were more severe in the ICH 160μL group than the sham group.Conclusions:A severe ICH model in rats was successfully established using an injection of autologous blood at a volume of 160μL.This model may provide a valuable tool to examine the pathological mechanisms and potential therapeutic interventions of severe ICH.
基金This work was supported by grants from National Natural Science Foundation of China(821021948,2172043)Sichuan Science and Technology Program(2023NSFSC1506).
文摘The applications of hydrogels have expanded significantly due to their versatile,highly tunable properties and breakthroughs in biomaterial technologies.In this review,we cover the major achievements and the potential of hydrogels in therapeutic applications,focusing primarily on two areas:emerging cell-based therapies and promising non-cell therapeutic modalities.Within the context of cell therapy,we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms,provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy,as well as list specific examples of their applications in different disease scenarios.We then explore the potential of hydrogels in drug delivery,physical intervention therapies,and other non-cell therapeutic areas(e.g.,bioadhesives,artificial tissues,and biosensors),emphasizing their utility beyond mere delivery vehicles.Additionally,we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions,particularly in terms of integration with advanced biomanufacturing technologies.This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and noncell therapies,tailored to meet the therapeutic requirements of diverse diseases and situations.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-YW-420-3,KZCX2-YW-Q-02-05)the National Natural Science Foundation of China (No.20437020,20677074)
文摘The levels and distributions of polybrominated diphenyl ethers (PBDEs) in chicken tissues from an electronic waste (e-waste) recycling area in southeast China were investigated. Human dietary intake by local residents via chicken muscle and eggs was estimated. The mean PBDEs concentrations in tissues ranged from 15.2 to 3138.1 ng/g lipid weight (lw) and in egg the concentration was 563.5 ng/g lw. The results showed that the level of total PBDEs (∑PBDEs) in the chicken tissue was 2-3 orders of magnitude higher than those reported in the literature. The large difference of ∑PBDEs concentrations between tissues confirmed that the distribution of PBDEs in tissues depend on tissue-specificity rather than the "lipid-compartment". BDE-209 was the predominant congener (82.5%- 94.7% of ∑PBDEs) in all chicken tissues except in brain (34.7% of ∑PBDEs), which indicated that deca-BDE (the major commercial PBDE formulation comprising 65%-70% of total production) was major pollution source in this area and could be bioaccumulated in terrestrial animals. The dietary PBDEs intake of the local residents from chicken muscle and egg, assuming only local bred chickens and eggs were consumed, ranged from 2.2 to 22.5 ng/(day.kg body weight (bw)) with a mean value of 13.5 ng/(day-kg bw), which was one order of magnitude higher than the value reported in previous studies for consumption of all foodstuffs.
基金This work was supported by Shanghai Hospital Development Center(grant number:SHDC2020CR3021A)the National Natural Science Foundation of China(grant number:82,072,788),both to Ye Gong.
文摘Progress in medicine such as the use of anti-infective drugs and development of the advanced life support equipment has greatly improved the survival rate of patients with sepsis.However,the incidence of sepsis-relateddiseases is increasing.These include severe neurologic and psychologic disorders,cognitive decline,anxiety,depression,and post-traumatic stress disorder.Cerebral dysfunction occurs via multiple interacting mechanisms,with different causative pathogens having distinct effects.Because sepsis-related diseases place a substantial burden on patients and their families,it is important to elucidate the underlying pathophysiologic mechanisms todevelop effective treatments.