A versatile use of a sulfur self-doped biochar derived from Camellia japonica(camellia)flowers is demonstrated as a multifunctional catalyst for overall water splitting and a supercapacitor.The native sulfur content i...A versatile use of a sulfur self-doped biochar derived from Camellia japonica(camellia)flowers is demonstrated as a multifunctional catalyst for overall water splitting and a supercapacitor.The native sulfur content in the camellia flower facilitates in situ self-doping of sulfur,which highly activates the camellia-driven biochar(SA-Came)as a multifunctional catalyst with the enhanced electron-transfer ability and long-term durability.For water splitting,an SA-Came-based electrode is highly stable and shows reaction activities in both hydrogen and oxygen evolution reactions,with overpotentials of 154 and 362 mV at 10 mA cm^(−2),respectively.For supercapacitors,SA-Came achieves a specific capacitance of 125.42 F g^(−1)at 2 A g^(−1)and high cyclic stability in a three-electrode system in a 1 M KOH electrolyte.It demonstrated a high energy density of 34.54 Wh kg^(−1)at a power density of 1600 W kg^(−1)as a symmetric hybrid supercapacitor device with a wide working potential range of 0-1.6 V.展开更多
Bismuthinite (Bi2S3)nanostructures were prepared by a hydrothermal method with sodium ethylenediamine- tetraacetate (EDTA-Na2). The morphology of Bi2S3 nanostructures was changed from a nanorod to a nanoplate by p...Bismuthinite (Bi2S3)nanostructures were prepared by a hydrothermal method with sodium ethylenediamine- tetraacetate (EDTA-Na2). The morphology of Bi2S3 nanostructures was changed from a nanorod to a nanoplate by presence of the EDTA-Na2. The altered morphology was caused by the capping effect of EDTA-Na2 with Bi3+ ions, which induces the suboptimal growth direction due to partially blocking the preferential orientation direction. When the EDTA-Na2/Bi3+ molar ratio= 1, the growth of Bi2S3 nanostructures was not allowed due to the chelating effect of EDTA-Na2. The obtained Bi2S3 nanorods, stacked nanorods, nanoplates and nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron mi- croscopy (HRTEM) and selected area electron diffraction (SAED) pattern. A possible formation mechanism of these morphologies was proposed. The successful synthesis of various morphologies of nanostructured Bi2S3 may open up new possibilities for thermoelectric, electronic and optoelectronic uses of nanodevices based on Bi2S3 nanostructure.展开更多
Electrochemical nitrogen reduction reaction(NRR)is a sustainable alterna-tive to the Haber-Bosch process for ammonia(NH3)production.However,the significant uphill energy in the multistep NRR pathway is a bottleneck fo...Electrochemical nitrogen reduction reaction(NRR)is a sustainable alterna-tive to the Haber-Bosch process for ammonia(NH3)production.However,the significant uphill energy in the multistep NRR pathway is a bottleneck for favorable serial reactions.To overcome this challenge,we designed a vanadium oxide/nitride(V_(2)O_(3)/VN)hybrid electrocatalyst in which V_(2)O_(3)and VN coex-ist coherently at the heterogeneous interface.Since single-phase V_(2)O_(3)and VN exhibit different surface catalytic kinetics for NRR,the V_(2)O_(3)/VN hybrid elec-trocatalyst can provide alternating reaction pathways,selecting a lower energy pathway for each material in the serial NRR pathway.As a result,the ammo-nia yield of the V_(2)O_(3)/VN hybrid electrocatalyst was 219.6µg h^(-1)cm^(-2),and the Faradaic efficiency was 18.9%,which is much higher than that of single-phase VN,V_(2)O_(3),and VNxOy solid solution catalysts without heterointerfaces.Density functional theory calculations confirmed that the composition of these hybrid electrocatalysts allows NRR to proceed from a multistep reduction reaction to a low-energy reaction pathway through the migration and adsorption of interme-diate species.Therefore,the design of metal oxide/nitride hybrids with coherent heterointerfaces provides a novel strategy for synthesizing highly efficient elec-trochemical catalysts that induce steps favorable for the efficient low-energy progression of NRR.展开更多
基金National Research Foundation of Korea,Grant/Award Numbers:2016M3D1A1021141,2020R1A2C2006077,2022R1A2C1012419,2021R1A4A1024129,2021R1A5A1030054Ministry of Trade,Industry and Energy(MOTIE,Korea),Grant/Award Number:20213030040590。
文摘A versatile use of a sulfur self-doped biochar derived from Camellia japonica(camellia)flowers is demonstrated as a multifunctional catalyst for overall water splitting and a supercapacitor.The native sulfur content in the camellia flower facilitates in situ self-doping of sulfur,which highly activates the camellia-driven biochar(SA-Came)as a multifunctional catalyst with the enhanced electron-transfer ability and long-term durability.For water splitting,an SA-Came-based electrode is highly stable and shows reaction activities in both hydrogen and oxygen evolution reactions,with overpotentials of 154 and 362 mV at 10 mA cm^(−2),respectively.For supercapacitors,SA-Came achieves a specific capacitance of 125.42 F g^(−1)at 2 A g^(−1)and high cyclic stability in a three-electrode system in a 1 M KOH electrolyte.It demonstrated a high energy density of 34.54 Wh kg^(−1)at a power density of 1600 W kg^(−1)as a symmetric hybrid supercapacitor device with a wide working potential range of 0-1.6 V.
文摘Bismuthinite (Bi2S3)nanostructures were prepared by a hydrothermal method with sodium ethylenediamine- tetraacetate (EDTA-Na2). The morphology of Bi2S3 nanostructures was changed from a nanorod to a nanoplate by presence of the EDTA-Na2. The altered morphology was caused by the capping effect of EDTA-Na2 with Bi3+ ions, which induces the suboptimal growth direction due to partially blocking the preferential orientation direction. When the EDTA-Na2/Bi3+ molar ratio= 1, the growth of Bi2S3 nanostructures was not allowed due to the chelating effect of EDTA-Na2. The obtained Bi2S3 nanorods, stacked nanorods, nanoplates and nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron mi- croscopy (HRTEM) and selected area electron diffraction (SAED) pattern. A possible formation mechanism of these morphologies was proposed. The successful synthesis of various morphologies of nanostructured Bi2S3 may open up new possibilities for thermoelectric, electronic and optoelectronic uses of nanodevices based on Bi2S3 nanostructure.
基金National Research Foundation of Korea,Grant/Award Numbers:2022R1A2C1012419,2022R1A2C1011559,2022R1C1C1007004。
文摘Electrochemical nitrogen reduction reaction(NRR)is a sustainable alterna-tive to the Haber-Bosch process for ammonia(NH3)production.However,the significant uphill energy in the multistep NRR pathway is a bottleneck for favorable serial reactions.To overcome this challenge,we designed a vanadium oxide/nitride(V_(2)O_(3)/VN)hybrid electrocatalyst in which V_(2)O_(3)and VN coex-ist coherently at the heterogeneous interface.Since single-phase V_(2)O_(3)and VN exhibit different surface catalytic kinetics for NRR,the V_(2)O_(3)/VN hybrid elec-trocatalyst can provide alternating reaction pathways,selecting a lower energy pathway for each material in the serial NRR pathway.As a result,the ammo-nia yield of the V_(2)O_(3)/VN hybrid electrocatalyst was 219.6µg h^(-1)cm^(-2),and the Faradaic efficiency was 18.9%,which is much higher than that of single-phase VN,V_(2)O_(3),and VNxOy solid solution catalysts without heterointerfaces.Density functional theory calculations confirmed that the composition of these hybrid electrocatalysts allows NRR to proceed from a multistep reduction reaction to a low-energy reaction pathway through the migration and adsorption of interme-diate species.Therefore,the design of metal oxide/nitride hybrids with coherent heterointerfaces provides a novel strategy for synthesizing highly efficient elec-trochemical catalysts that induce steps favorable for the efficient low-energy progression of NRR.