Known as laser trapping,optical tweezers,with nanometer accuracy and pico-newton precision,plays a pivotal role in single bio-molecule measurements and controllable motions of micro-machines.In order to advance the fl...Known as laser trapping,optical tweezers,with nanometer accuracy and pico-newton precision,plays a pivotal role in single bio-molecule measurements and controllable motions of micro-machines.In order to advance the flourishing applications for those achievements,it is necessary to make clear the three-dimensional dynamic process of micro-particles stepping into an optical field.In this paper,we utilize the ray optics method to calculate the optical force and optical torque of a micro-sphere in optical tweezers.With the influence of viscosity force and torque taken into account,we numerically solve and analyze the dynamic process of a dielectric micro-sphere in optical tweezers on the basis of Newton mechanical equations under various conditions of initial positions and velocity vectors of the particle.The particle trajectory over time can demonstrate whether the particle can be successfully trapped into the optical tweezers center and reveal the subtle details of this trapping process.Even in a simple pair of optical tweezers,the dielectric micro-sphere exhibits abundant phases of mechanical motions including acceleration,deceleration,and turning.These studies will be of great help to understand the particle-laser trap interaction in various situations and promote exciting possibilities for exploring novel ways to control the mechanical dynamics of microscale particles.展开更多
With the advantages of noncontact,high accuracy,and high flexibility,optical tweezers hold huge potential for micro-manipulation and force measurement.However,the majority of previous research focused on the state of ...With the advantages of noncontact,high accuracy,and high flexibility,optical tweezers hold huge potential for micro-manipulation and force measurement.However,the majority of previous research focused on the state of the motion of particles in the optical trap,but paid little attention to the early dynamic process between the initial state of the particles and the optical trap.Note that the viscous forces can greatly affect the motion of micro-spheres.In this paper,based on the equations of Newtonian mechanics,we investigate the dynamics of laser-trapped micro-spheres in the surrounding environment with different viscosity coefficients.Through the calculations,over time the particle trajectory clearly reveals the subtle details of the optical capture process,including acceleration,deceleration,turning,and reciprocating oscillation.The time to equilibrium mainly depends on the corresponding damping coefficient of the surrounding environment and the oscillation frequency of the optical tweezers.These studies are essential for understanding various mechanisms to engineer the mechanical motion behavior of molecules or microparticles in liquid or air.展开更多
Job hopping affects the development of industries in terms of efficiency and quality of work. It is a problem for the Chinese construction industry, where excessive job hopping is detrimental to meeting the current da...Job hopping affects the development of industries in terms of efficiency and quality of work. It is a problem for the Chinese construction industry, where excessive job hopping is detrimental to meeting the current daunting challenges involved in the industry's transformation and efficiency improvement. To provide an exhaustive analysis of this effect, game theory is combined with social relationship networks to create an agent-based simulation model. Simulation results indicate that the frequent job moves of Chinese construction workers have a negative effect on their skill development, employment, and worker relationships, as well as results in sharp increase in employer labor costs. The findings point to the need to act for the benefit of workers and employers and maintain the development of the industry.展开更多
基金This work is supported by the National Natural Science Foundation of China(Grant No.11974119 and No.11804399)the Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06C594)+1 种基金the Fundamental Research Funds for the Central Universities,South-Central University for Nationalities(Grant No.CZQ20018)National Key R&D Program of China(No.2018YFA 0306200).
文摘Known as laser trapping,optical tweezers,with nanometer accuracy and pico-newton precision,plays a pivotal role in single bio-molecule measurements and controllable motions of micro-machines.In order to advance the flourishing applications for those achievements,it is necessary to make clear the three-dimensional dynamic process of micro-particles stepping into an optical field.In this paper,we utilize the ray optics method to calculate the optical force and optical torque of a micro-sphere in optical tweezers.With the influence of viscosity force and torque taken into account,we numerically solve and analyze the dynamic process of a dielectric micro-sphere in optical tweezers on the basis of Newton mechanical equations under various conditions of initial positions and velocity vectors of the particle.The particle trajectory over time can demonstrate whether the particle can be successfully trapped into the optical tweezers center and reveal the subtle details of this trapping process.Even in a simple pair of optical tweezers,the dielectric micro-sphere exhibits abundant phases of mechanical motions including acceleration,deceleration,and turning.These studies will be of great help to understand the particle-laser trap interaction in various situations and promote exciting possibilities for exploring novel ways to control the mechanical dynamics of microscale particles.
基金Project supported by the National Natural Science Foundation of China(Grant No.11804399)the Special Funds for Basic Scientific Research at the Central University of South-Central University for Nationalities(Grant No.CZQ20018)Special Funds for Basic Scientific Research at Central Universities(Grant No.YZZ17005)。
文摘With the advantages of noncontact,high accuracy,and high flexibility,optical tweezers hold huge potential for micro-manipulation and force measurement.However,the majority of previous research focused on the state of the motion of particles in the optical trap,but paid little attention to the early dynamic process between the initial state of the particles and the optical trap.Note that the viscous forces can greatly affect the motion of micro-spheres.In this paper,based on the equations of Newtonian mechanics,we investigate the dynamics of laser-trapped micro-spheres in the surrounding environment with different viscosity coefficients.Through the calculations,over time the particle trajectory clearly reveals the subtle details of the optical capture process,including acceleration,deceleration,turning,and reciprocating oscillation.The time to equilibrium mainly depends on the corresponding damping coefficient of the surrounding environment and the oscillation frequency of the optical tweezers.These studies are essential for understanding various mechanisms to engineer the mechanical motion behavior of molecules or microparticles in liquid or air.
文摘Job hopping affects the development of industries in terms of efficiency and quality of work. It is a problem for the Chinese construction industry, where excessive job hopping is detrimental to meeting the current daunting challenges involved in the industry's transformation and efficiency improvement. To provide an exhaustive analysis of this effect, game theory is combined with social relationship networks to create an agent-based simulation model. Simulation results indicate that the frequent job moves of Chinese construction workers have a negative effect on their skill development, employment, and worker relationships, as well as results in sharp increase in employer labor costs. The findings point to the need to act for the benefit of workers and employers and maintain the development of the industry.