期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental and Numerical Research on Water Transport during Adsorption and Desorption in Cement-Based Materials
1
作者 Xiang Zhang miao su +3 位作者 Wenjie Yu Zhen Lei Jun Ren Juntong Qu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1487-1507,共21页
The durability of cement-based materials is related to water transport and storage in their pore network under different humidity conditions.To understand the mechanism and characteristics of water adsorption and deso... The durability of cement-based materials is related to water transport and storage in their pore network under different humidity conditions.To understand the mechanism and characteristics of water adsorption and desorption processes from the microscopic scale,this study introduces different points of view for the pore space model generation and numerical simulation of water transport by considering the“ink-bottle”effect.On the basis of the pore structure parameters(i.e.,pore size distribution and porosity)of cement paste and mortar with water-binder ratios of 0.3,0.4 and 0.5 obtained via mercury intrusion porosimetry,randomly formed 3D pore space models are generated using two-phase transformation on Gaussian random fields and verified via image analysis method of mathematical morphology.Considering the Kelvin-Laplace equation and the influence of“ink-bottle”pores,two numerical calculation scenarios based on mathematical morphology are proposed and applied to the generated model to simulate the adsorption-desorption process.The simulated adsorption and desorption curves are close to those of the experiment,verifying the effectiveness of the developed model and methods.The obtained results characterize water transport in cement-based materials during the variation of relative humidity and further explain the hysteresis effect due to“ink-bottle”pores from the microscopic scale. 展开更多
关键词 Cement-based material adsorption and desorption ink-bottle effect pore space modeling mathematical morphology
下载PDF
Application of an interpretable artificial neural network to predict the interface strength of a near-surface mounted fiber-reinforced polymer to concrete joint 被引量:2
2
作者 miao su Hui PENG Shao-fan LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第6期427-440,共14页
Accurately estimating the interfacial bond capacity of the near-surface mounted(NSM)carbon fiber-reinforced polymer(CFRP)to concrete joint is a fundamental task in the strengthening and retrofit of existing reinforced... Accurately estimating the interfacial bond capacity of the near-surface mounted(NSM)carbon fiber-reinforced polymer(CFRP)to concrete joint is a fundamental task in the strengthening and retrofit of existing reinforced concrete(RC)structures.The machine learning(ML)approach may provide an alternative to the commonly used semi-empirical or semi-analytical methods.Therefore,in this work we have developed a predictive model based on an artificial neural network(ANN)approach,i.e.using a back propagation neural network(BPNN),to map the complex data pattern obtained from an NSM CFRP to concrete joint.It involves a set of nine material and geometric input parameters and one output value.Moreover,by employing the neural interpretation diagram(NID)technique,the BPNN model becomes interpretable,as the influence of each input variable on the model can be tracked and quantified based on the connection weights of the neural network.An extensive database including 163 pull-out testing samples,collected from the authors’research group and from published results in the literature,is used to train and verify the ANN.Our results show that the prediction given by the BPNN model agrees well with the experimental data and yields a coefficient of determination of 0.957 on the whole database.After removing one non-significant feature,the BPNN becomes even more computationally efficient and accurate.In addition,compared with the existed semi-analytical model,the ANN-based approach demonstrates a more accurate estimation.Therefore,the proposed ML method may be a promising alternative for predicting the bond strength of NSM CFRP to concrete joint for structural engineers. 展开更多
关键词 Fiber-reinforced polymer(FRP) Bond strength Machine learning(ML) Neural interpretation diagram(NID) Regression Feature importance Connection weights approach
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部