期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Short-Term Response of Soil Microbial Biomass to Different Chabazite Zeolite Amendments
1
作者 Giacomo FERRETTI Katharina Maria KEIBlINGER +5 位作者 Dario DI GIUSEPPE Barbara FACCINI Nicolò COlOMBANI Sophie ZECHMEISTER-BOlTENSTERN Massimo COlTORTI micòl mastrocicco 《Pedosphere》 SCIE CAS CSCD 2018年第2期277-287,共11页
Zeolitites (ZTs) are rocks containing more than 50% of zeolite minerals and are known to be a suitable material for agricultural purposes by improving soil physicochemical properties and nitrogen (N) use efficiency. H... Zeolitites (ZTs) are rocks containing more than 50% of zeolite minerals and are known to be a suitable material for agricultural purposes by improving soil physicochemical properties and nitrogen (N) use efficiency. However, little is known about their effects on soil microbial biomass. This study aimed to evaluate short-term effects of different chabazite-rich ZT (CHAZT) amendments on soil microbial biomass and activity. A silty-clay agricultural soil was amended in three different ways, including the addition of natural (5% and 15%) and NH_4^+-enriched (10%) CHAZT. Soil dissolved organic carbon (C), total dissolved N, NH_4^+, NO_3^-, NO_2^-, microbial biomass C and N, and ergosterol were measured periodically over 16 d in a laboratory incubation. To verify the microbial immobilization of the N derived from NH_4^+-enriched CHAZT, a high15N source was used for enriching the mineral to measure the microbial biomass δ15N signature. An increase in the ergosterol content was observed in the soil amended with 5% natural CHAZT. However, no similar result was observed in the soil amended with 15% natural CHAZT, suggesting that the fungal biomass was favored at a lower CHAZT application rate. In the soil amended with NH+ 4-enriched CHAZT, microbial biomass N was related to NO_3^-production over time and inversely related to NH_4^+, suggesting high nitrification process. Isotopic measurements on microbial biomass confirmed immediate assimilation of N derived from NH_4^+-enriched CHAZT. These results suggested that the NH_4^+-enriched CHAZT used in this study supplied an immediately available N pool to the microbial biomass. 展开更多
关键词 ERGOSTEROL microbial biomass δ15N natural ZEOLITE NH4+-enriched ZEOLITE NITRIFICATION slow-release FERTILIZER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部