期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
冲突与支持影响情侣依恋的文化差异 被引量:9
1
作者 陆爱桃 张积家 +3 位作者 michael Harris Bond 张学新 michael friedman Chan Ching 《心理学报》 CSSCI CSCD 北大核心 2009年第6期534-544,共11页
采用香港和美国的被试,运用亲密关系经历量表、冲突量表和社会支持量表,考察了冲突和支持对于情侣依恋影响的文化差异。结果发现,当以依恋焦虑为因变量时,冲突、支持和文化×冲突×支持都是显著的预测变量;当以依恋逃避为因变量... 采用香港和美国的被试,运用亲密关系经历量表、冲突量表和社会支持量表,考察了冲突和支持对于情侣依恋影响的文化差异。结果发现,当以依恋焦虑为因变量时,冲突、支持和文化×冲突×支持都是显著的预测变量;当以依恋逃避为因变量时,仅文化和文化×支持是显著的预测变量。由此可见,文化影响冲突×支持与依恋焦虑的关系:在香港,情侣之间的冲突和支持各自对于依恋焦虑的作用在很大程度上相互抵消;在美国,情侣之间冲突的负面影响比支持的积极影响要强,冲突×支持越高,依恋焦虑越高。对于依恋逃避,文化差异仅调节支持与依恋逃避的关系:在香港,支持对依恋逃避的影响要比美国强。整个研究表明,对不同类型的情侣依恋,文化的调节作用不同。 展开更多
关键词 情侣依恋 依恋焦虑 依恋逃避 文化 冲突 支持
下载PDF
On fundamental groups related to the Hirzebruch surface F_1
2
作者 michael friedman Mina TEICHER 《Science China Mathematics》 SCIE 2008年第4期728-745,共18页
Given a projective surface and a generic projection to the plane,the braid monodromy factorization(and thus,the braid monodromy type)of the complement of its branch curve is one of the most important topological invar... Given a projective surface and a generic projection to the plane,the braid monodromy factorization(and thus,the braid monodromy type)of the complement of its branch curve is one of the most important topological invariants,stable on deformations.From this factorization,one can compute the fundamental group of the complement of the branch curve,either in C^2 or in CP^2.In this article,we show that these groups,for the Hirzebruch surface F_1,(a,b),are almost-solvable.That is, they are an extension of a solvable group,which strengthen the conjecture on degeneratable surfaces. 展开更多
关键词 Hirzebruch SURFACES DEGENERATION generic PROJECTION branch curve BRAID MONODROMY FUNDAMENTAL group classification of SURFACES
原文传递
The Fundamental Group of the Complement of the Branch Curve of CP^1×T
3
作者 Meirav AMRAM michael friedman Mina TEICHER 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第9期1443-1458,共16页
Denoting by T the complex projective torus, we can embed the surface CP^1 × T in CP^5. In this paper we compute the fundamental group of the complement of the branch curve of this surface. Since the embedding is ... Denoting by T the complex projective torus, we can embed the surface CP^1 × T in CP^5. In this paper we compute the fundamental group of the complement of the branch curve of this surface. Since the embedding is not "ample enough", the embedded surface does not belong to the classes of surfaces where the fundamental group is virtually solvable: a property which holds for these groups for "ample enough" embeddings. On the other hand, as it is the first example of this computation for non simply-connected surfaces, the structure of this group (as shown in this paper) give rise to the extension of the conjecture regarding the structure of those fundamental groups of any surface. 展开更多
关键词 fundamental group generic projection curves and singularities branch curve
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部