Differential quadrature phase shift keying (DQPSK) modulation is attractive in high-speed optical communications because of its resistance to fiber non-linearities and more efficient use of fiber bandwidth compared ...Differential quadrature phase shift keying (DQPSK) modulation is attractive in high-speed optical communications because of its resistance to fiber non-linearities and more efficient use of fiber bandwidth compared to conventional intensity modulation schemes. Because of its wavelength conversion ability and phase preservation, semiconductor optical amplifier (SOA) four- wave mixing (FWM) has attracted much attention. We experimentally study wavelength conversion of 40 Gbit/s (20 Gbaud) non-return-to-zero (NRZ)-DQPSK data using FWM in a quantum dash SOA with 20 dB gain and 5 dBm output saturation power. Q factor improvement and eye diagram reshaping is shown for up to 3 nm pump-probe detuning and is superior to that reported for a higher gain bulk SOA.展开更多
基金Acknowledgements This research was supported by Science Foundation Ireland Investigator Grant 09/IN.1/I2641.
文摘Differential quadrature phase shift keying (DQPSK) modulation is attractive in high-speed optical communications because of its resistance to fiber non-linearities and more efficient use of fiber bandwidth compared to conventional intensity modulation schemes. Because of its wavelength conversion ability and phase preservation, semiconductor optical amplifier (SOA) four- wave mixing (FWM) has attracted much attention. We experimentally study wavelength conversion of 40 Gbit/s (20 Gbaud) non-return-to-zero (NRZ)-DQPSK data using FWM in a quantum dash SOA with 20 dB gain and 5 dBm output saturation power. Q factor improvement and eye diagram reshaping is shown for up to 3 nm pump-probe detuning and is superior to that reported for a higher gain bulk SOA.