期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Improved performance of UVC-LEDs by combination of high-temperature annealing and epitaxially laterally overgrown AlN/sapphire 被引量:4
1
作者 NORMAN SUSILO EVIATHAR ZIFFER +12 位作者 SYLVIA HAGEDORN LEONARDO CANCELLARA CARSTEN NETZEL NEYSHA LOBO PLOCH SHAOJUN WU JENS RASS SEBASTIAN WALDE LUCA SULMONI MARTIN GUTTMANN TIM WERNICKE MARTIN ALBRECHT MARKUS WEYERS michael kneissl 《Photonics Research》 SCIE EI CSCD 2020年第4期589-594,共6页
We report on the performance of AlGaN-based deep ultraviolet light-emitting diodes(UV-LEDs)emitting at 265 nm grown on stripe-patterned high-temperature annealed(HTA)epitaxially laterally overgrown(ELO)aluminium nitri... We report on the performance of AlGaN-based deep ultraviolet light-emitting diodes(UV-LEDs)emitting at 265 nm grown on stripe-patterned high-temperature annealed(HTA)epitaxially laterally overgrown(ELO)aluminium nitride(AIN)/sapphire templates.For this purpose,the structural and electro-optical properties of ultraviolet-c light-emitting diodes(UVC-LEDs)on as-grown and on HTA planar AlN/sapphire as well as ELO AlN/sapphire with and without HTA are investigated and compared.Cathodoluminescence measurements reveal dark spot densities of 3.5×10^9 cm^-2,1.1×10^9 cm^-2,1.4×10^9 cm^-2,and 0.9×10^9 cm^-2 in multiple quantum well samples on as-grown planar AIN/sapphire,HTA planar AlN/sapphire,ELO AlN/sapphire,and HTA ELO AlN/sapphire,respectively,and are consistent with the threading dislocation densities determined by transmission electron microscopy(TEM)and high-resolution X-ray diffraction rocking curve.The UVC-LED performance improves with the reduction of the threading dislocation densities(TDDs).The output powers(measured on-wafer in cw operation at 20 mA)of the UV-LEDs emitting at 265 nm were 0.03 mW(planar AlN/sapphire),0.8 mW(planar HTA AlN/sapphire),0.9 mW(ELO AlN/sapphire),and 1.1 mW(HTA ELO AlN/sapphire),respectively.Furthermore,Monte Carlo ray-tracing simulations showed a 15%increase in light-extraction efficiency due to the voids formed in the ELO process.These results demonstrate that HTA ELO AlN/sapphire templates provide a viable approach to increase the efficiency of UV-LEDs,improving both the internal quantum efficiency and the light-extraction efficiency. 展开更多
关键词 Improved performance UVC-LEDs COMBINATION high-temperature annealing epitaxially laterally overgrown AlN/sapphire ALN UVC
原文传递
Current-induced degradation and lifetime prediction of 310 nm ultraviolet light-emitting diodes 被引量:4
2
作者 Jan Ruschel Johannes Glaab +7 位作者 Batoul Beidoun Neysha Lobo Ploch Jens Rass Tim Kolbe Arne Knauer Markus Weyers Sven Einfeldt michael kneissl 《Photonics Research》 SCIE EI CSCD 2019年第7期14-18,共5页
The impact of operation current on the degradation behavior of 310 nm UV LEDs is investigated over 1000 h of stress. It ranges from 50 to 300 mA and corresponds to current densities from 34 to 201 A/cm^2.To separate t... The impact of operation current on the degradation behavior of 310 nm UV LEDs is investigated over 1000 h of stress. It ranges from 50 to 300 mA and corresponds to current densities from 34 to 201 A/cm^2.To separate the impact of current from that of temperature, the junction temperature is kept constant by adjusting the heat sink temperature. Higher current was found to strongly accelerate the optical power reduction during operation. A mathematical model for lifetime prediction is introduced.It indicates that lifetime is inversely proportional to the cube of the current density, suggesting the involvement of Auger recombinati on. 展开更多
关键词 DEGRADATION LIGHT-EMITTING DIODES LIFETIME
原文传递
Electrical properties and microstructure formation of V/Al-based n-contacts on high Al mole fraction n-AlGaN layers 被引量:4
3
作者 LUCA SULMONI FRANK MEHNKE +3 位作者 ANNA MOGILATENKO MARTIN GUTTMANN TIM WERNICKE michael kneissl 《Photonics Research》 SCIE EI CSCD 2020年第8期1381-1387,共7页
The electrical and structural properties of V/Al-based n-contacts on n‐AlxGa1−xN with an Al mole fraction x ranging from x=0.75 to x=0.95 are investigated.Ohmic n-contacts are obtained up to x=0.75 with a contact res... The electrical and structural properties of V/Al-based n-contacts on n‐AlxGa1−xN with an Al mole fraction x ranging from x=0.75 to x=0.95 are investigated.Ohmic n-contacts are obtained up to x=0.75 with a contact resistivity of 5.7×10^−4Ω·cm^2 whereas for higher Al mole fraction the IV characteristics are rectifying.Transmission electron microscopy reveals a thin crystalline AlN layer formed at the metal/semiconductor interface upon thermal annealing.Compositional analysis confirmed an Al enrichment at the interface.The interfacial nitride-based layer in n-contacts on n‐Al0.9Ga0.1N is partly amorphous and heavily contaminated by oxygen.The role and resulting limitations of Al in the metal stack for n-contacts on n-AlGaN with very high Al mole fraction are discussed.Finally,ultraviolet C(UVC)LEDs grown on n‐Al0.87Ga0.13N and emitting at 232 nm are fabricated with an operating voltage of 7.3 V and an emission power of 120μW at 20 mA in cw operation. 展开更多
关键词 ALGAN FRACTION properties
原文传递
Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs 被引量:2
4
作者 CARLO DE SANTI MATTEO MENEGHINI +10 位作者 DESIREE MONTI JOHANNES GLAAB MARTIN GUTTMANN JENS RASS SVEN EINFELDT FRANK MEHNKE JOHANNES ENSLIN TIM WERNICKE michael kneissl GAUDENZIO MENEGHESSO ENRICO ZANONI 《Photonics Research》 SCIE EI 2017年第2期44-51,共8页
This paper reports a comprehensive analysis of the origin of the electroluminescence(EL)peaks and of the thermal droop in UV-B AlGaN-based LEDs.By carrying out spectral measurements at several temperatures and current... This paper reports a comprehensive analysis of the origin of the electroluminescence(EL)peaks and of the thermal droop in UV-B AlGaN-based LEDs.By carrying out spectral measurements at several temperatures and currents,(i)we extract information on the physical origin of the various spectral bands,and(ii) we develop a novel closed-form model based on the Shockley–Read–Hall theory and on the ABC rate equation that is able to reproduce the experimental data on thermal droop caused by non-radiative recombination through deep levels.In the samples under test,the three EL bands are ascribed to the following processes:band-to-band recombination in the quantum wells(main EL peak),a parasitic intra-bandgap radiative transition in the quantum well barriers,and a second defect-related radiative process in the p-AlGaN superlattice. 展开更多
关键词 Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs Ga AlGaN EBL SRH UV
原文传递
MOVPE-grown AlGaN-based tunnel heterojunctions enabling fully transparent UVC LEDs 被引量:1
5
作者 Christian Kuhn Luca Sulmoni +5 位作者 Martin Guttmann Johannes Glaab Norman Susilo Tim Wernicke Markus Weyers michael kneissl 《Photonics Research》 SCIE EI CSCD 2019年第5期I0008-I0012,共5页
We report on AlGaN-based tunnel heterojunctions grown by metalorganic vapor phase epitaxy enabling fully transparent UVC LEDs by eliminating the absorbing p-AlGaN and p-GaN layers. Furthermore, the electrical characte... We report on AlGaN-based tunnel heterojunctions grown by metalorganic vapor phase epitaxy enabling fully transparent UVC LEDs by eliminating the absorbing p-AlGaN and p-GaN layers. Furthermore, the electrical characteristics can be improved by exploiting the higher conductivity of n-AlGaN layers as well as a lower resistance of n-contacts. UVC LEDs with AlGaN:Mg/AlGaN:Si tunnel junctions exhibiting single peak emission at268 nm have been realized, demonstrating effective carrier injection into the AlGaN multiple quantum well active region. The incorporation of a low band gap interlayer enables effective tunneling and strong voltage reduction.Therefore, the interlayer thickness is systematically varied. Tunnel heterojunction LEDs with an 8 nm thick GaN interlayer exhibit continuous-wave emission powers >3 m W near thermal rollover. External quantum efficiencies of 1.4% at a DC current of 5 m A and operating voltages of 20 V are measured on-wafer. Laterally homogeneous emission is demonstrated by UV-sensitive electroluminescence microscopy images. The complete UVC LED heterostructure is grown in a single epitaxy process including in situ activation of the magnesium acceptors. 展开更多
关键词 MOVPE-grown AlGaN-based UVC LEDS
原文传递
Electrical and optical characteristics of highly transparent MOVPE-grown AlGaN-based tunnel heterojunction LEDs emitting at 232 nm
6
作者 FRANK MEHNKE CHRISTIAN KUHN +5 位作者 MARTIN GUTTMANN LUCA SULMONI VERENA MONTAG JOHANNES GLAAB TIM WERNICKE michael kneissl 《Photonics Research》 SCIE EI CAS CSCD 2021年第6期1117-1123,共7页
We present the growth and electro-optical characteristics of highly transparent AlGaN-based tunnel heterojunction light-emitting diodes(LEDs)emitting at 232 nm entirely grown by metalorganic vapor phase epitaxy(MOVPE)... We present the growth and electro-optical characteristics of highly transparent AlGaN-based tunnel heterojunction light-emitting diodes(LEDs)emitting at 232 nm entirely grown by metalorganic vapor phase epitaxy(MOVPE).A GaN:Si interlayer was embedded into a highly Mg-and Si-doped Al_(0.87)Ga_(0.13)N tunnel junction to enable polarization field enhanced tunneling.The LEDs exhibit an on-wafer integrated emission power of 77μWat 5 mA,which correlates to an external quantum efficiency(EQE)of 0.29%with 45μWemitted through the bottom sapphire substrate and 32μW emitted through the transparent top surface.After depositing a highly reflective aluminum reflector,a maximum emission power of 1.73 mW was achieved at 100 mA under pulsed mode operation with a maximum EQE of 0.35%as collected through the bottom substrate. 展开更多
关键词 HETEROJUNCTION MOVPE ALGAN
原文传递
Displacement Talbot lithography for nanoengineering of III-nitride materials
7
作者 Pierre-Marie Coulon Benjamin Damilano +12 位作者 Blandine Alloing Pierre Chausse Sebastian Walde Johannes Enslin Robert Armstrong Stephane Vezian Sylvia Hagedorn Tim Wernicke Jean Massies Jesus Zuniga‐Perez Markus Weyers michael kneissl Philip A.Shields 《Microsystems & Nanoengineering》 EI CSCD 2019年第1期38-49,共12页
Nano-engineering III-nitride semiconductors offers a route to further control the optoelectronic properties,enabling novel functionalities and applications.Although a variety of lithography techniques are currently em... Nano-engineering III-nitride semiconductors offers a route to further control the optoelectronic properties,enabling novel functionalities and applications.Although a variety of lithography techniques are currently employed to nanoengineer these materials,the scalability and cost of the fabrication process can be an obstacle for large-scale manufacturing.In this paper,we report on the use of a fast,robust and flexible emerging patterning technique called Displacement Talbot lithography(DTL),to successfully nano-engineer III-nitride materials.DTL,along with its novel and unique combination with a lateral planar displacement(D^(2)TL),allow the fabrication of a variety of periodic nanopatterns with a broad range of filling factors such as nanoholes,nanodots,nanorings and nanolines;all these features being achievable from one single mask.To illustrate the enormous possibilities opened by DTL/D2TL,dielectric and metal masks with a number of nanopatterns have been generated,allowing for the selective area growth of InGaN/GaN core-shell nanorods,the top-down plasma etching of III-nitride nanostructures,the top-down sublimation of GaN nanostructures,the hybrid top-down/bottom-up growth of AlN nanorods and GaN nanotubes,and the fabrication of nanopatterned sapphire substrates for AlN growth.Compared with their planar counterparts,these 3D nanostructures enable the reduction or filtering of structural defects and/or the enhancement of the light extraction,therefore improving the efficiency of the final device.These results,achieved on a wafer scale via DTL and upscalable to larger surfaces,have the potential to unlock the manufacturing of nano-engineered III-nitride materials. 展开更多
关键词 Talbot PLANAR NITRIDE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部