期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Transcranial photobiomodulation for the brain: a wide range of clinical applications
1
作者 michael r.hamblin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期483-484,共2页
Photobiomodulation therapy(PBMT)is a rapidly growing approach to the healing,stimulation,protection,and regeneration of many human organs and tissue types.PBMT started in the 1960s as low-level laser therapy for wound... Photobiomodulation therapy(PBMT)is a rapidly growing approach to the healing,stimulation,protection,and regeneration of many human organs and tissue types.PBMT started in the 1960s as low-level laser therapy for wound healing,but since then the introduction of light-emitting diodes(LEDs)has dramatically increased the number of applications and reports of positive results.PBMT generally uses red(620-700 nm)and/or near-infrared(780-1270 nm)wavelengths of light at an intensity that causes no tissue heating,and its activity is based on well-established biological and cellular mechanisms(de Freitas and Hamblin,2016).While laser therapists continue to use various types of laser in their office practice,LEDs are ideally suited for home use devices because they are completely safe and without any known significant adverse effects.Among the various body parts on which PBMT has been shown to exert beneficial effects,the brain stands out as perhaps the most promising overall.PBMT has been shown to reduce neuroinflammation,while increasing mitochondrial function,oxygen consumption,and blood flow within the brain(Hamblin,2016).Moreover,PBMT can stimulate the processes of synaptogenesis,neurogenesis,and neuroplasticity thus helping the brain to heal itself. 展开更多
关键词 HEALING STIMULATION WOUND
下载PDF
A spotlight on dosage and subject selection for effective neuroprotection: exploring the central role of mitochondria
2
作者 John Mitrofanis Jonathan Stone +3 位作者 michael r.hamblin Pierre Magistretti Alim-Louis Benabid Glen Jeffery 《Neural Regeneration Research》 SCIE CAS 2025年第4期1081-1082,共2页
Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological cond... Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological conditions,including stroke,head trauma,and neurodegenerative disease,can generate stress in neurons,affecting their survival and proper function.In most neural pathologies,mitochondria become dysfunctional and this plays a pivotal role in the process of cell death.The challenge over the last few decades has been to develop effective interventions that improve neuronal homeostasis under pathological conditions.Such interventions,often referred to as disease-modifying or neuroprotective,have,however,proved frustratingly elusive,at both preclinical and,in particular,clinical levels.In this perspective,we highlight two factors that we feel are key to the development of effective neuroprotective treatments.These are:firstly,the choice of dose of intervention and method of application,and secondly,the selection of subjects,whether they be patients or the animal model. 展开更多
关键词 protective DOSAGE DISTRESS
下载PDF
Photodynamic therapy accelerates skin wound healing through promoting re-epithelialization 被引量:3
3
作者 Zengjun Yang Xiaohong Hu +10 位作者 Lina Zhou Yaxiong He Xiaorong Zhang Jiacai Yang Zhenyu Ju Yih-Cherng Liou Han-Ming Shen Gaoxing Luo michael r.hamblin Weifeng He Rui Yin 《Burns & Trauma》 SCIE 2021年第1期299-310,共12页
Background:Epidermal stem cells(EpSCs)that reside in cutaneous hair follicles and the basal layer of the epidermis are indispensable for wound healing and skin homeostasis.Little is known about the effects of photoche... Background:Epidermal stem cells(EpSCs)that reside in cutaneous hair follicles and the basal layer of the epidermis are indispensable for wound healing and skin homeostasis.Little is known about the effects of photochemical activation on EpSC differentiation,proliferation and migration during wound healing.The present study aimed to determine the effects of photodynamic therapy(PDT)on wound healing in vivo and in vitro.Methods:We created mouse full-thickness skin resection models and applied 5-aminolevulinic acid(ALA)for PDT to the wound beds.Wound healing was analysed by gross evaluation and haematoxylin–eosin staining in vivo.In cultured EpSCs,protein expression was measured using flow cytometry and immunohistochemistry.Cell migration was examined using a scratch model;apoptosis and differentiation were measured using flow cytometry.Results:PDT accelerated wound closure by enhancing EpSC differentiation,proliferation and migration,thereby promoting re-epithelialization and angiogenesis.PDT inhibited inflammatory infiltration and expression of proinflammatory cytokines,whereas the secretion of growth factors was greater than in other groups.The proportion of transient amplifying cells was significantly greater in vivo and in vitro in the PDT groups.EpSC migration was markedly enhanced after ALAinduced PDT.Conclusions:Topical ALA-induced PDT stimulates wound healing by enhancing re-epithelialization,promoting angiogenesis as well as modulating skin homeostasis.This work provides a preliminary theoretical foundation for the clinical administration of topical ALA-induced PDT in skin wound healing. 展开更多
关键词 Photodynamic therapy Wound healing 5-aminolevulinic acid RE-EPITHELIALIZATION Epidermal stem cells Transient amplifying cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部