期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The complex momentum representation approach and its application to low‑lying resonances in 17 O and^(29,31)F
1
作者 Si‑Zhe Xu Shi‑Sheng Zhang +1 位作者 Xiao‑Qian Jiang michael scott smith 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第1期43-50,共8页
Approaches for predicting low-lying resonances,uniformly treating bound,and resonant levels have been a long-standing goal in nuclear theory.Accordingly,we explored the viability of the complex momentum representation... Approaches for predicting low-lying resonances,uniformly treating bound,and resonant levels have been a long-standing goal in nuclear theory.Accordingly,we explored the viability of the complex momentum representation(CMR)approach coupled with new potentials.We focus on predicting the energy of the low-lying 2p_(3∕2)resonance in 17 O,which is critical for s-process nucleosynthesis and missing in previous theoretical research.Using a Woods-Saxon potential based on the Koning-Delaroche optical model and constrained by the experimental one-neutron separation energy,we successfully predicted the resonant energy of this level for the first time.Our predictions of the bound levels and 1d_(3∕2)resonance agree well with the measurement results.Additionally,we utilize this approach to study the near-threshold resonances that play a role when forming a two-neutron halo in^(29,31)F.We found that the CMR-based predictions of the bound-level energies and unbound 1f7∕2 level agree well with the results obtained using the scattering phase shift method.Subsequently,we successfully found a solution for the 2p_(3∕2)resonance with energy just above the threshold,which is decisive for halo formation. 展开更多
关键词 Neutron capture Low-lying resonance Complex momentum representation Resonance energy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部