期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mathematical analysis of a Wolbachia invasive model with imperfect maternal transmission and loss of Wolbachia infection 被引量:1
1
作者 Adeshina I.Adekunle michael t.meehan Emma S.McBryde 《Infectious Disease Modelling》 2019年第1期265-285,共21页
Arboviral infections,especially dengue,continue to cause significant health burden in their endemic regions.One of the strategies to tackle these infections is to replace the main vector agent,Ae.aegypti,with the ones... Arboviral infections,especially dengue,continue to cause significant health burden in their endemic regions.One of the strategies to tackle these infections is to replace the main vector agent,Ae.aegypti,with the ones incapable of transmitting the virus.Wolbachia,an intracellular bacterium,has shown promise in achieving this goal.However,key factors such as imperfect maternal transmission,loss of Wolbachia infection,reduced reproductive capacity and shortened life-span affect the dynamics of Wolbachia in different forms in the Ae.aegypti population.In this study,we developed a Wolbachia transmission dynamic model adjusting for imperfect maternal transmission and loss ofWolbachia infection.The invasive reproductive number that determines the likelihood of replacement of the Wolbachia-uninfected(WU)population is derived and with it,we established the local and global stability of the equilibrium points.This analysis clearly shows that cytoplasmic incompatibility(CI)does not guarantee establishment of the Wolbachia-infected(WI)mosquitoes as imperfect maternal transmission and loss of Wolbachia infection could outweigh the gains from CI.Optimal release programs depending on the level of imperfect maternal transmission and loss of Wolbachia infection are shown.Hence,it is left to decision makers to either aim for replacement or co-existence of both populations. 展开更多
关键词 Imperfect maternal transmission Wolbachia infection Local stability Global stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部