期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Weakly-Supervised Single-view Dense 3D Point Cloud Reconstruction via Differentiable Renderer 被引量:2
1
作者 Peng Jin Shaoli Liu +4 位作者 Jianhua Liu Hao Huang Linlin Yang michael weinmann Reinhard Klein 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第5期195-205,共11页
In recent years,addressing ill-posed problems by leveraging prior knowledge contained in databases on learning techniques has gained much attention.In this paper,we focus on complete three-dimensional(3D)point cloud r... In recent years,addressing ill-posed problems by leveraging prior knowledge contained in databases on learning techniques has gained much attention.In this paper,we focus on complete three-dimensional(3D)point cloud reconstruction based on a single red-green-blue(RGB)image,a task that cannot be approached using classical reconstruction techniques.For this purpose,we used an encoder-decoder framework to encode the RGB information in latent space,and to predict the 3D structure of the considered object from different viewpoints.The individual predictions are combined to yield a common representation that is used in a module combining camera pose estimation and rendering,thereby achieving differentiability with respect to imaging process and the camera pose,and optimization of the two-dimensional prediction error of novel viewpoints.Thus,our method allows end-to-end training and does not require supervision based on additional ground-truth(GT)mask annotations or ground-truth camera pose annotations.Our evaluation of synthetic and real-world data demonstrates the robustness of our approach to appearance changes and self-occlusions,through outperformance of current state-of-the-art methods in terms of accuracy,density,and model completeness. 展开更多
关键词 Point clouds reconstruction Differentiable renderer Neural networks Single-view configuration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部