The evolutionarily conserved Wnt signaling pathway plays a central role in develop-ment and adult tissue homeostasis across species.Wnt proteins are secreted,lipid-modified signaling molecules that activate the canoni...The evolutionarily conserved Wnt signaling pathway plays a central role in develop-ment and adult tissue homeostasis across species.Wnt proteins are secreted,lipid-modified signaling molecules that activate the canonical(β-catenin dependent)and non-canonical(β-catenin independent)Wnt signaling pathways.Cellular behaviors such as proliferation,differ-entiation,maturation,and proper body-axis specification are carried out by the canonical pathway,which is the best characterized of the known Wnt signaling paths.Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues.This includes but is not limited to embryonic,hematopoietic,mesenchymal,gut,neural,and epidermal stem cells.Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties.Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders.Not surprisingly,aberrant Wnt signaling is also associated with a wide variety of diseases,including cancer.Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation,epithelial-mesenchymal transition,and metastasis.Altogether,advances in the understand-ing of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway.Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt,this review aims to summarize the cur-rent knowledge of Wnt signaling in stem cells,aberrations to the Wnt pathway associated with diseases,and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.展开更多
Wnt signaling plays a major role in regulating cell proliferation and differentiation.The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors an...Wnt signaling plays a major role in regulating cell proliferation and differentiation.The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either throughβ-catenin in the canonical pathway or through a series of other proteins in the nonca-nonical pathway.Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body,establishing the complex interplay between Wnt signaling and other signaling pathways.This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes.Dys-regulation of this system has been implicated in many diseases affecting a wide array of organ systems,including cancer and embryological defects,and can even cause embryonic lethality.The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments.However,both stimulatory and inhibitory treatments come with potential risks that need to be addressed.This review synthesized much of the current knowl-edge on the Wnt signaling pathway,beginning with the history of Wnt signaling.It thoroughly described the different variants of Wnt signaling,including canonical,noncanonical Wnt/PCP,and the noncanonical Wnt/Ca2+pathway.Further description involved each of its components and their involvement in other cellular processes.Finally,this review explained the various other pathways and processes that crosstalk with Wnt signaling.展开更多
基金supported in part by research grants from the National Institutes of Health(No.CA226303 to TCH and No.DE030480 to RRR)JF was supported in part by research grants from the Natural Science Foundation of China(No.82102696)+4 种基金the 2019 Science and Technology Research Plan Project of Chongqing Education Commission(China)(No.KJQN201900410)the 2019 Funding for Postdoctoral Research(Chongqing Human Resources and Social Security Bureau No.298,Chongqing,China)WW was supported by the Medical Scientist Training Program of the National Institutes of Health(No.T32 GM007281)This project was also supported in part by The University of Chicago Cancer Center Support Grant(No.P30CA014599)the National Center for Advancing Translational Sciences(NCATS)of the National Institutes of Health(No.5UL1TR002389).
文摘The evolutionarily conserved Wnt signaling pathway plays a central role in develop-ment and adult tissue homeostasis across species.Wnt proteins are secreted,lipid-modified signaling molecules that activate the canonical(β-catenin dependent)and non-canonical(β-catenin independent)Wnt signaling pathways.Cellular behaviors such as proliferation,differ-entiation,maturation,and proper body-axis specification are carried out by the canonical pathway,which is the best characterized of the known Wnt signaling paths.Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues.This includes but is not limited to embryonic,hematopoietic,mesenchymal,gut,neural,and epidermal stem cells.Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties.Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders.Not surprisingly,aberrant Wnt signaling is also associated with a wide variety of diseases,including cancer.Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation,epithelial-mesenchymal transition,and metastasis.Altogether,advances in the understand-ing of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway.Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt,this review aims to summarize the cur-rent knowledge of Wnt signaling in stem cells,aberrations to the Wnt pathway associated with diseases,and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
基金supported in part by research grants from the National Institutes of Health(No.CA226303 to TCH and No.DE030480 to RRR)the American Shoulder and Elbow Surgeons PJI Research Grant(LLS).JF was supported in part by research grants from the Natural Science Foundation of China(No.82102696)+4 种基金the 2019 Science and Technology Research Plan Project of Chongqing Education Commission(China)(No.KJQN201900410)the 2019 Funding for Postdoctoral Research(Chongqing Human Resources and Social Security Bureau No.298)WW was supported by the Medical Scientist Training Program of the National Institutes of Health(No.T32 GM007281)This project was also supported in partby The University of Chicago Cancer Center Support Grant(No.P30CA014599)the National Center for Advancing Translational Sciences(NCATS)of the National Institutes of Health through Grant Number 5UL1TR002389.
文摘Wnt signaling plays a major role in regulating cell proliferation and differentiation.The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either throughβ-catenin in the canonical pathway or through a series of other proteins in the nonca-nonical pathway.Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body,establishing the complex interplay between Wnt signaling and other signaling pathways.This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes.Dys-regulation of this system has been implicated in many diseases affecting a wide array of organ systems,including cancer and embryological defects,and can even cause embryonic lethality.The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments.However,both stimulatory and inhibitory treatments come with potential risks that need to be addressed.This review synthesized much of the current knowl-edge on the Wnt signaling pathway,beginning with the history of Wnt signaling.It thoroughly described the different variants of Wnt signaling,including canonical,noncanonical Wnt/PCP,and the noncanonical Wnt/Ca2+pathway.Further description involved each of its components and their involvement in other cellular processes.Finally,this review explained the various other pathways and processes that crosstalk with Wnt signaling.