Osteoporosis is a highly prevalent public health burden associated with an increased risk of bone fracture, particularly in aging women. Estrogen, an important medicinal component for the preventative and therapeutic ...Osteoporosis is a highly prevalent public health burden associated with an increased risk of bone fracture, particularly in aging women. Estrogen, an important medicinal component for the preventative and therapeutic treatment of postmenopausal osteoporosis, induces osteogenesis by activating the estrogen receptor signaling pathway and upregulating the expression of osteogenic genes, such as bone morphogenetic proteins(BMPs). The epigenetic regulation of estrogen-mediated osteogenesis,however, is still unclear. In this report, we found that estrogen significantly induced the expression of lysine-specific demethylase 6B(KDM6B) and that KDM6B depletion by shRNAs led to a significant reduction in the osteogenic potential of DMSCs.Mechanistically, upon estrogen stimulation, estrogen receptor-α(ERα) was recruited to the KDM6B promoter, directly enhancing KDM6B expression. Subsequently, KDM6B was recruited to the BMP2 and HOXC6 promoters, resulting in the removal of H3K27me3 marks and activating the transcription of BMP2 and HOXC6, the master genes of osteogenic differentiation. Furthermore, we found that estrogen enhanced DMSC osteogenesis during calvarial bone regeneration and that estrogen’s pro-osteogenic effect was dependent on KDM6B in vivo. Taken together, our results demonstrate the vital role of the ERα/KDM6B regulatory axis in the epigenetic regulation of the estrogen-dependent osteogenic response.展开更多
The nanotechnology industry advances rapidly,and at the vanguard are the promising silver nanoparticles(Ag NPs),which have diverse applications.These nanometer-sized particles have been shown to inhibit the ability ...The nanotechnology industry advances rapidly,and at the vanguard are the promising silver nanoparticles(Ag NPs),which have diverse applications.These nanometer-sized particles have been shown to inhibit the ability of bacteria to produce adenosine triphosphate(ATP),a molecule necessary for chemical energy transport in cells.The antimicrobial properties of Ag NPs(and Ag+)make them valued antibacterial展开更多
Revolutionary in scope and application, the CRISPR Cas9 endonuclease system can be guided by 20-nt single guide RNA (sgRNA) to any complementary loci on the double- stranded DNA. Once the target site is located, Cas...Revolutionary in scope and application, the CRISPR Cas9 endonuclease system can be guided by 20-nt single guide RNA (sgRNA) to any complementary loci on the double- stranded DNA. Once the target site is located, Cas9 can then cleave the DNA and introduce mutations. Despite the power of this system, sgRNA is highly susceptible to off-target homologous attachment and can consequently cause Cas9 to cleave DNA at off- target sites. In order to better understand this flaw in the system, the human genome and Streptococcus pyogenes Cas9 (SpCas9) were used in a mathematical and computational study to analyze the probabilities of potential sgRNA off-target homologies. It has been concluded that off-target sites are nearly unavoidable for large-size genomes, such as the human genome. Backed by mathematical analysis, a viable solution is the double-nicking method which has the promise for genome editing specificity. Also applied in this study was a computational algorithm for off-target homology search that was implemented in Java to confirm the mathematical analysis.展开更多
基金supported by NIH/NIDCR grants K08DE024603, R01DE16513, and R01DE024828
文摘Osteoporosis is a highly prevalent public health burden associated with an increased risk of bone fracture, particularly in aging women. Estrogen, an important medicinal component for the preventative and therapeutic treatment of postmenopausal osteoporosis, induces osteogenesis by activating the estrogen receptor signaling pathway and upregulating the expression of osteogenic genes, such as bone morphogenetic proteins(BMPs). The epigenetic regulation of estrogen-mediated osteogenesis,however, is still unclear. In this report, we found that estrogen significantly induced the expression of lysine-specific demethylase 6B(KDM6B) and that KDM6B depletion by shRNAs led to a significant reduction in the osteogenic potential of DMSCs.Mechanistically, upon estrogen stimulation, estrogen receptor-α(ERα) was recruited to the KDM6B promoter, directly enhancing KDM6B expression. Subsequently, KDM6B was recruited to the BMP2 and HOXC6 promoters, resulting in the removal of H3K27me3 marks and activating the transcription of BMP2 and HOXC6, the master genes of osteogenic differentiation. Furthermore, we found that estrogen enhanced DMSC osteogenesis during calvarial bone regeneration and that estrogen’s pro-osteogenic effect was dependent on KDM6B in vivo. Taken together, our results demonstrate the vital role of the ERα/KDM6B regulatory axis in the epigenetic regulation of the estrogen-dependent osteogenic response.
文摘The nanotechnology industry advances rapidly,and at the vanguard are the promising silver nanoparticles(Ag NPs),which have diverse applications.These nanometer-sized particles have been shown to inhibit the ability of bacteria to produce adenosine triphosphate(ATP),a molecule necessary for chemical energy transport in cells.The antimicrobial properties of Ag NPs(and Ag+)make them valued antibacterial
文摘Revolutionary in scope and application, the CRISPR Cas9 endonuclease system can be guided by 20-nt single guide RNA (sgRNA) to any complementary loci on the double- stranded DNA. Once the target site is located, Cas9 can then cleave the DNA and introduce mutations. Despite the power of this system, sgRNA is highly susceptible to off-target homologous attachment and can consequently cause Cas9 to cleave DNA at off- target sites. In order to better understand this flaw in the system, the human genome and Streptococcus pyogenes Cas9 (SpCas9) were used in a mathematical and computational study to analyze the probabilities of potential sgRNA off-target homologies. It has been concluded that off-target sites are nearly unavoidable for large-size genomes, such as the human genome. Backed by mathematical analysis, a viable solution is the double-nicking method which has the promise for genome editing specificity. Also applied in this study was a computational algorithm for off-target homology search that was implemented in Java to confirm the mathematical analysis.