We present a soliton resonance method for moving target detection which is based on the use of inhomogeneous Korteweg-de Vries equation. Zero initial and absorbing boundary conditions are used to obtain the solution o...We present a soliton resonance method for moving target detection which is based on the use of inhomogeneous Korteweg-de Vries equation. Zero initial and absorbing boundary conditions are used to obtain the solution of the equation. The solution will be soliton-like if its right part contains the information about the moving target. The induced soliton will grow in time and the soliton propagation will reflect the kinematic properties of the target. Such soliton-like solution is immune to different types of noise present in the data set, and the method allows to significantly amplify the simulated target signal. Both, general formalism and computer simulations justifying the soliton resonance method capabilities are presented. Simulations are performed for 1D and 2D target movement.展开更多
This paper proposes a mathematical formalism for describing the machinery of human mind creativity. Since some functions of mind support discreteness of cognition, but others support its continuity, while time in phys...This paper proposes a mathematical formalism for describing the machinery of human mind creativity. Since some functions of mind support discreteness of cognition, but others support its continuity, while time in physics is always continuous, an attempt to overcome the continuous/discrete duality of mind performance is implemented via utilization of special critical points: terminal attractors and repellers that act as autonomous biological clock. In this paper, attention is concentrated upon the discrete mode of the mind activity since the continuous mode was introduced and discussed in details in our previous publications. The fundamental novelty of the model is in its capability to move from disorder to order without external inputs in violation of the second law of thermodynamics;that suggests that this kind of dynamics requires extension of modern physics to include physics of life. Conceptually the discrete model links to its continuous version represented by a hypothetical particle of life that is briefly discussed prior to derivation of the discrete model. However, the discrete model should be considered as the next step in study of mind dynamics since it provides a bridge to mathematical origin of self-generated novelties in such brunches as mathematical logic and linguistic, i.e. the highest level activities of human mind. The proposed model deals with rules of mind activity rather than with its content.展开更多
This paper discusses quantum-inspired models of Livings from the viewpoint of information processing. The model of Livings consists of motor dynamics simulating actual behavior of the object, and mental dynamics repre...This paper discusses quantum-inspired models of Livings from the viewpoint of information processing. The model of Livings consists of motor dynamics simulating actual behavior of the object, and mental dynamics representing evolution of the corresponding knowledge-base and incorporating it in the form of information flows into the motor dynamics. Due to feedback from mental dynamics, the motor dynamics attains quantum-like properties: its trajectory splits into a family of different trajectories, and each of those trajectories can be chosen with the probability prescribed by the mental dynamics The paper concentrates on discovery of a new type of entanglement that correlates the probabilities of actions of Livings rather than the actions themselves.展开更多
文摘We present a soliton resonance method for moving target detection which is based on the use of inhomogeneous Korteweg-de Vries equation. Zero initial and absorbing boundary conditions are used to obtain the solution of the equation. The solution will be soliton-like if its right part contains the information about the moving target. The induced soliton will grow in time and the soliton propagation will reflect the kinematic properties of the target. Such soliton-like solution is immune to different types of noise present in the data set, and the method allows to significantly amplify the simulated target signal. Both, general formalism and computer simulations justifying the soliton resonance method capabilities are presented. Simulations are performed for 1D and 2D target movement.
文摘This paper proposes a mathematical formalism for describing the machinery of human mind creativity. Since some functions of mind support discreteness of cognition, but others support its continuity, while time in physics is always continuous, an attempt to overcome the continuous/discrete duality of mind performance is implemented via utilization of special critical points: terminal attractors and repellers that act as autonomous biological clock. In this paper, attention is concentrated upon the discrete mode of the mind activity since the continuous mode was introduced and discussed in details in our previous publications. The fundamental novelty of the model is in its capability to move from disorder to order without external inputs in violation of the second law of thermodynamics;that suggests that this kind of dynamics requires extension of modern physics to include physics of life. Conceptually the discrete model links to its continuous version represented by a hypothetical particle of life that is briefly discussed prior to derivation of the discrete model. However, the discrete model should be considered as the next step in study of mind dynamics since it provides a bridge to mathematical origin of self-generated novelties in such brunches as mathematical logic and linguistic, i.e. the highest level activities of human mind. The proposed model deals with rules of mind activity rather than with its content.
文摘This paper discusses quantum-inspired models of Livings from the viewpoint of information processing. The model of Livings consists of motor dynamics simulating actual behavior of the object, and mental dynamics representing evolution of the corresponding knowledge-base and incorporating it in the form of information flows into the motor dynamics. Due to feedback from mental dynamics, the motor dynamics attains quantum-like properties: its trajectory splits into a family of different trajectories, and each of those trajectories can be chosen with the probability prescribed by the mental dynamics The paper concentrates on discovery of a new type of entanglement that correlates the probabilities of actions of Livings rather than the actions themselves.