期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics 被引量:1
1
作者 Svetoslav Nikolov Mitchell AWood +5 位作者 Attila Cangi Jean-Bernard Maillet mihai-cosmin marinica Aidan PThompson Michael P.Desjarlais Julien Tranchida 《npj Computational Materials》 SCIE EI CSCD 2021年第1期1414-1425,共12页
A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials(ML-IAPs)for largescale spin-lattice dynamics simulations.The magneto-elastic ML-IAPs are constructed by couplin... A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials(ML-IAPs)for largescale spin-lattice dynamics simulations.The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin model with an ML-IAP.Together they represent a potential energy surface from which the mechanical forces on the atoms and the precession dynamics of the atomic spins are computed.Both the atomic spin model and the ML-IAP are parametrized on data from first-principles calculations.We demonstrate the efficacy of our data-driven framework across magneto-structural phase transitions by generating a magneto-elastic ML-IAP forα-iron.The combined potential energy surface yields excellent agreement with firstprinciples magneto-elastic calculations and quantitative predictions of diverse materials properties including bulk modulus,magnetization,and specific heat across the ferromagnetic–paramagnetic phase transition. 展开更多
关键词 TRANSITION DYNAMICS MAGNETO
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部