期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Polariton lasing in Mie-resonant perovskite nanocavity
1
作者 mikhail a.masharin Daria Khmelevskaia +12 位作者 Valeriy I.Kondratiev Daria I.Markina Anton D.Utyushev Dmitriy M.Dolgintsev Alexey D.Dmitriev Vanik A.Shahnazaryan Anatoly P.Pushkarev Furkan Isik Ivan V.Iorsh Ivan A.Shelykh Hilmi V.Demir Anton K.Samusev Sergey V.Makarov 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第4期27-42,共16页
Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dime... Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating.Here we ex-ploit exciton-polariton condensation and mirror-image Mie modes in a cuboid CsPbBr3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53μm from its ultra-small(≈0.007μm3 or≈λ3/20)semiconductor nanocav-ity.The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct com-parison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters.Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy(≈35 meV),re-fractive index(>2.5 at low temperature),and luminescence quantum yield of CsPbBr3,but also by the optimization of po-laritons condensation on the Mie resonances with quality factors improved by the metallic substrate.Moreover,the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr3,which govern polaritons condensation path.Such chemically synthesized colloidal CsPbBr3 nanolasers can be potentially de-posited on arbitrary surfaces,which makes them a versatile tool for integration with various on-chip systems. 展开更多
关键词 nanolaser PEROVSKITE POLARITON Mie resonance EXCITON-POLARITON
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部