期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Boron isotopic variations in tourmaline from metacarbonates and associated calc-silicate rocks from the Bohemian Massif: Constraints on boron recycling in the Variscan orogen 被引量:1
1
作者 Lukas Krmcek milan novak +2 位作者 Robert B.Trumbull Jan Cempirek Stanislav Houzar 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期219-230,共12页
Various metacarbonate and associated calc-silicate rocks form minor but genetically significant components of the lithological units in the Bohemian Massif of the Variscan orogen in Central Europe.These rocks vary in ... Various metacarbonate and associated calc-silicate rocks form minor but genetically significant components of the lithological units in the Bohemian Massif of the Variscan orogen in Central Europe.These rocks vary in terms of their lithostratigraphy,chemical composition and mineral assemblage(dolomite/calcite ratio,silicate abundance).Tourmaline is present in five paragenetic settings within the metacarbonate and calc-silicate units.TypeⅠcomprises individual,euhedral,prismatic grains and grain aggregates in a carbonate-dominant(calcite±dolomite)matrix poor in silicates.TypeⅡis characterized by euhedral to subhedral grains and coarse-to fine-grained aggregates in silicate-rich layers/nests within metacarbonate bodies whereas typeⅢoccurs as prismatic grains and aggregates at the contact zones between carbonate and associated silicate host rocks.TypeⅣis in veins crosscutting metacarbonate bodies,and typeⅣtourmaline occurs at the exocontacts of elbaite-subtype granitic pegmatite.Tourmaline from the different settings shows distinctive compositional features.Typical for typeⅠare Mg-rich compositions,with fluor-uvite>dravite>>magnesio-lucchesiite.Tourmalines from typeⅡsilicate-rich layers/nests are highly variable,corresponding to oxy-schorl,magnesio-foitite,Al-rich dravite and fluor-uvite.Typical for typeⅢtourmalines are Ca,Ti-bearing oxy-dravite compositions.The typeⅣveins feature dravite and fluor-uvite tourmaline compositions whereas typeⅤtourmaline is Li,F-rich dravite.Tourmaline is the only Bbearing phase in paragenetic typesⅠ-Ⅳ,where it is characterised by two principal ranges of B-isotope composition(δ^11B=-13‰to-9‰and-18‰to-14‰).These ranges correspond to regionally different units of the Moldanubian Zone.Thus,the Svratka Unit(Moldanubian Zone s.l.)contains only isotopically lighter tourmaline(δ^11B=-18‰to-14‰),whereas metacarbonates in the Poli?ka unit(Teplá-Barrandian Zone)and Olesnice unit(Moravicum of the Moravo-Silesian Zone)has exclusively isotopically heavier tourmaline(δ^11B=-9‰to-13‰).Tourmalines from metacarbonates in the Variegated Unit cover both ranges of isotope composition.The isotopically light end of the B isotope range may indicate the presence of continental evaporites within individual investigated areas.On the other hand,variations in the range of~8δ-units is consistent with the reported shift in B isotopic composition of metasedimentary rocks of the Bohemian Massif due to the prograde metamorphism from very-low grade to eclogite facies.In contrast to the metacarbonate-hosted settings,tourmaline of paragenetic type V from the exocontact of granitic pegmatites displays a significantly heavier range ofδ^11B(as low as-7.7‰to-0.6‰),which is attributed to partitioning of 10 B to cogenetic axinite and/or different B-signature of the source pegmatite containing tourmaline with heavyδ^11B signature. 展开更多
关键词 Boron isotopes TOURMALINE Metacarbonates Moldanubicum Variscan orogeny
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部