In this paper,a new hybridized mixed formulation of weak Galerkin method is studied for a second order elliptic problem.This method is designed by approximate some operators with discontinuous piecewise polynomials in...In this paper,a new hybridized mixed formulation of weak Galerkin method is studied for a second order elliptic problem.This method is designed by approximate some operators with discontinuous piecewise polynomials in a shape regular finite element partition.Some discrete inequalities are presented on discontinuous spaces and optimal order error estimations are established.Some numerical results are reported to show super convergence and confirm the theory of the mixed weak Galerkin method.展开更多
文摘In this paper,a new hybridized mixed formulation of weak Galerkin method is studied for a second order elliptic problem.This method is designed by approximate some operators with discontinuous piecewise polynomials in a shape regular finite element partition.Some discrete inequalities are presented on discontinuous spaces and optimal order error estimations are established.Some numerical results are reported to show super convergence and confirm the theory of the mixed weak Galerkin method.