The cancer stem cell(CSC)state and epithelial-mesenchymal transition(EMT)activation are tightly interconnected.Cancer cells that acquire the EMT/CSC phenotype are equipped with adaptive metabolic changes to maintain l...The cancer stem cell(CSC)state and epithelial-mesenchymal transition(EMT)activation are tightly interconnected.Cancer cells that acquire the EMT/CSC phenotype are equipped with adaptive metabolic changes to maintain low reactive oxygen species levels and stemness,enhanced drug transporters,anti-apoptotic machinery and DNA repair system.Factors present in the tumor microenvironment such as hypoxia and the communication with non-cancer stromal cells also promote cancer cells to enter the EMT/CSC state and display related resistance.ATP,particularly the high levels of intratumoral extracellular ATP functioning through both signaling pathways and ATP internalization,induces and regulates EMT and CSC.The three of them work together to enhance drug resistance.New findings in each of these factors will help us explore deeper into mechanisms of drug resistance and suggest new resistance-associated markers and therapeutic targets.展开更多
基金This work was supported in part by a NIH grant R15 CA242177-01 to Chen X.
文摘The cancer stem cell(CSC)state and epithelial-mesenchymal transition(EMT)activation are tightly interconnected.Cancer cells that acquire the EMT/CSC phenotype are equipped with adaptive metabolic changes to maintain low reactive oxygen species levels and stemness,enhanced drug transporters,anti-apoptotic machinery and DNA repair system.Factors present in the tumor microenvironment such as hypoxia and the communication with non-cancer stromal cells also promote cancer cells to enter the EMT/CSC state and display related resistance.ATP,particularly the high levels of intratumoral extracellular ATP functioning through both signaling pathways and ATP internalization,induces and regulates EMT and CSC.The three of them work together to enhance drug resistance.New findings in each of these factors will help us explore deeper into mechanisms of drug resistance and suggest new resistance-associated markers and therapeutic targets.