In the current paper,the best linear unbiased estimators(BLUEs)of location and scale parameters from location-scale family will be respectively proposed in cases when one parameter is known and when both are unknown u...In the current paper,the best linear unbiased estimators(BLUEs)of location and scale parameters from location-scale family will be respectively proposed in cases when one parameter is known and when both are unknown under moving extremes ranked set sampling(MERSS).Explicit mathematical expressions of these estimators and their variances are derived.Their relative efficiencies with respect to the minimum variance unbiased estimators(MVUEs)under simple random sampling(SRS)are compared for the cases of some usual distributions.The numerical results show that the BLUEs under MERSS are significantly more efficient than the MVUEs under SRS.展开更多
基金supported by National Science Foundation of China (Grant Nos.12261036 and 11901236)Scientific Research Fund of Hunan Provincial Education Department (Grant No.21A0328)+1 种基金Provincial Natural Science Foundation of Hunan (Grant No.2022JJ30469)Young Core Teacher Foundation of Hunan Province (Grant No.[2020]43)。
文摘In the current paper,the best linear unbiased estimators(BLUEs)of location and scale parameters from location-scale family will be respectively proposed in cases when one parameter is known and when both are unknown under moving extremes ranked set sampling(MERSS).Explicit mathematical expressions of these estimators and their variances are derived.Their relative efficiencies with respect to the minimum variance unbiased estimators(MVUEs)under simple random sampling(SRS)are compared for the cases of some usual distributions.The numerical results show that the BLUEs under MERSS are significantly more efficient than the MVUEs under SRS.