An artificial solid electrolyte interphase(SEI)with lithiophilic sites and chemical bonds anchoring lithium polysulfides(LiPSs)has been developed as a potential solution to protect the lithium(Li)metal anode of Lithiu...An artificial solid electrolyte interphase(SEI)with lithiophilic sites and chemical bonds anchoring lithium polysulfides(LiPSs)has been developed as a potential solution to protect the lithium(Li)metal anode of Lithium-sulfur(Li-S)batteries.This strategy aims to guide consistent Li deposition and relieve lithium corrosion.Herein,the evolution process of lithiophilic sites based on aluminum fluoride(AlF_(3))in an artificial SEI is disclosed in Li-S batteries with metal-based lithiophilic sites.The polyester polymer(PMMA and PPC)/AlF_(3) artificial SEI(MPAF-SEI)was homogeneously anchored on Li anode by in-situ polymerization.The conversion of AlF_(3) into Li-Al and LiF lithiophilic sites effectively reduce the Li nucleation overpotential and prevents the formation of Li dendrites.At the same time,the polymer can anchor LiPSs by chemical bonds and prevents Li corrosion.The optimized MPAF-SEI protected Li demonstrates excellent stability for over 3000 h at a capacity of 1 mAh cm^(-2) in Li||Li symmetric cells.The Li-S battery with low N/P(4)exhibits a capacity of 532.6 mAh g^(-1) over 300 cycles lifespan at 0.5 C.展开更多
Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. H...Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. Herein, we report a nitrogen-doped porous carbon derived from biomass pomelo peel as sulfur host material for Li-S batteries. The hierarchical porous architecture and the polar surface introduced by N-doping render a favorable combination of physical and chemical sulfur confinements as well as an expedite electron/ion transfer, thus contributing to a facilitated and stabilized sulfur electrochemistry. As a result, the corresponding sulfur composite electrodes exhibit an ultrahigh initial capacity of 1534.6 mAh g^-1, high coulombic efficiency over 98% upon 300 cycles, and decent rate capability up to 2 C. This work provides an economical and effective strategy for the fabrication of advanced carbonaceous sulfur host material as well as the significant improvement of Li-S battery performance.展开更多
Molten salt is an excellent medium for chemical reaction,energy transfer,and storage.Molten salt innovative technologies should be developed to recover metals from secondary resources and reserve metals from primary n...Molten salt is an excellent medium for chemical reaction,energy transfer,and storage.Molten salt innovative technologies should be developed to recover metals from secondary resources and reserve metals from primary natural sources.Among these technologies,molten salt electrolysis is an economic and environment-friendly method to extract metals from waste materials.From the perspective of molten salt characteristics,the application of molten salts in chemistry,electrochemistry,energy,and thermal storage should be comprehensively elaborated.This review discusses further directions for the research and development of molten salt electrolysis and their use for metal recovery from various metal wastes,such as magnet scrap,nuclear waste,and cemented carbide scrap.Attention is placed on the development of various electrolysis methods for different metal containing wastes,overcoming some problems in electrolytes,electrodes,and electrolytic cells.Special focus is given to future development directions for current associated processing obstacles.展开更多
Rational design of porous conductive hosts with high electrical conductivity,large surface area,and adequate interior space is desirable to suppressing dendritic lithium growth and accommodating large volume change of...Rational design of porous conductive hosts with high electrical conductivity,large surface area,and adequate interior space is desirable to suppressing dendritic lithium growth and accommodating large volume change of lithium metal anode during the Li plating/stripping process.However,due to the conductive nature of the conductive hosts,Li is easily deposited directly on the top of the hosts,which hinders it from fully functioning.To circumvent the issue,in this study,we designed a novel porous carbon host with a gradient-pore-size structure based on one-dimensional(1D)carbon with different diameters.With this kind of host,stable cycling with high and stable Coulombic efficiency of~98%is achieved at 0.5 mA cm^(−2) with an areal capacity of 1 mAh cm^(−2) over 320 cycles.In contrast,the normal three-dimensional(3D)carbon nanotube host presents a moss-like Li morphology with wildly fluctuating Coulombic efficiency after 100 cycles.The results reveal that the unique gradient-pore-size structure of the 3D conductive host greatly improves the performance of lithium metal batteries.展开更多
The notorious shuttle effect has long been obstructing lithium-sulfur(Li-S) batteries from yielding the expected high energy density and long lifespan.Herein,we develop a multifunctional polysulfide barrier reinforced...The notorious shuttle effect has long been obstructing lithium-sulfur(Li-S) batteries from yielding the expected high energy density and long lifespan.Herein,we develop a multifunctional polysulfide barrier reinforced by the graphitic carbon nitride/carbon nanotube(g-C_3 N_4/CNT) composite toward inhibited shuttling behavior and improved battery performance.The obtained g-C_3 N_4 delivers a unique spongelike architecture with massive ion transfer pathways and fully exposed active interfaces,while the abundant C-N heteroatomic structures impose strong chemical immobilization toward lithium polysulfides.Combined with the highly conductive agent,the g-C_3 N_4/CNT reinforced separator is endowed with great capability of confining and reutilizing the active sulfur within the cathode,thus contributing to an efficient and stable sulfur electrochemistry.Benefiting from these synergistic attributes,Li-S cells based on g-C_3 N_4/CNT separator exhibit an excellent cyclability with a minimum decay rate of 0.03% per cycle over 500 cycles and decent rate capability up to 2 C.Moreover,a high areal capacity of 7.69 mAh cm^(-2)can be achieved under a raised sulfur loading up to 10.1 mg cm^(-2).demonstrating a facile and efficient pathway toward superior Li-S batteries.展开更多
The flexible self-supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity,which meets the requirements of flexible batteries.Lithium-sulfur batteries(LSBs),as...The flexible self-supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity,which meets the requirements of flexible batteries.Lithium-sulfur batteries(LSBs),as a new generation of energy storage system,hold much higher theoretical energy density than traditional batteries,and they have attracted extensive attention from both the academic and industrial communities.Selection of a proper substrate material is important for the flexible self-supporting electrode.Carbon materials,with the advantages of light weight,high conductivity,strong structural plasticity,and low cost,provide the electrode with a large loading space for the active material and a conductive network.This makes the carbon materials meet the mechanical and electrochemical requirements of flexible electrodes.In this paper,the commonly used fabrication methods and recent research progresses of the flexible self-supporting cathode with a carbon material as the substrate are introduced.Various sulfur loading methods are summarized,which provides useful information for the structural design of the cathode.As the first review article of the carbon-based flexible self-supporting LSB cathodes,it provides valuable guidance for the researchers working in the field of LSB.展开更多
基金supported by the Jilin Province Science and Technology Department Program(Nos.YDZJ202201-ZYTS304,20220201130GX and 20240101004JJ)the National Natural Science Foundation of China(Nos.52171210 and 52471229)the Science and Technology Project of Jilin Provincial Education Department(No.JJKH20220428KJ).
文摘An artificial solid electrolyte interphase(SEI)with lithiophilic sites and chemical bonds anchoring lithium polysulfides(LiPSs)has been developed as a potential solution to protect the lithium(Li)metal anode of Lithium-sulfur(Li-S)batteries.This strategy aims to guide consistent Li deposition and relieve lithium corrosion.Herein,the evolution process of lithiophilic sites based on aluminum fluoride(AlF_(3))in an artificial SEI is disclosed in Li-S batteries with metal-based lithiophilic sites.The polyester polymer(PMMA and PPC)/AlF_(3) artificial SEI(MPAF-SEI)was homogeneously anchored on Li anode by in-situ polymerization.The conversion of AlF_(3) into Li-Al and LiF lithiophilic sites effectively reduce the Li nucleation overpotential and prevents the formation of Li dendrites.At the same time,the polymer can anchor LiPSs by chemical bonds and prevents Li corrosion.The optimized MPAF-SEI protected Li demonstrates excellent stability for over 3000 h at a capacity of 1 mAh cm^(-2) in Li||Li symmetric cells.The Li-S battery with low N/P(4)exhibits a capacity of 532.6 mAh g^(-1) over 300 cycles lifespan at 0.5 C.
基金financially supported by the Natural Science Foundation of Beijing (No. L182062)the Beijing Nova program (Z171100001117077)+5 种基金the Yue Qi Young Scholar Project of China University of Mining & Technology (Beijing) (No. 2017QN17)the Fundamental Research Funds for the Central Universities (No.2014QJ02)the program for the Development of Science and Technology of Jilin Province (Nos. 20190201309JC and 20190101009JH)the Project of Development and Reform Commission of Jilin Province (No. 2019C042-1)the support from Natural Sciences and Engineering Research Council of Canada (NSERC)the University of Waterloo.
文摘Lithium-sulfur(Li-S) battery is a potential energy storage technology with high energy density and low cost. However, the gap between theoretical expectation and practical performance limits its wide implementation. Herein, we report a nitrogen-doped porous carbon derived from biomass pomelo peel as sulfur host material for Li-S batteries. The hierarchical porous architecture and the polar surface introduced by N-doping render a favorable combination of physical and chemical sulfur confinements as well as an expedite electron/ion transfer, thus contributing to a facilitated and stabilized sulfur electrochemistry. As a result, the corresponding sulfur composite electrodes exhibit an ultrahigh initial capacity of 1534.6 mAh g^-1, high coulombic efficiency over 98% upon 300 cycles, and decent rate capability up to 2 C. This work provides an economical and effective strategy for the fabrication of advanced carbonaceous sulfur host material as well as the significant improvement of Li-S battery performance.
基金the National Natural Science Foundation of China(No.51621003)the Beijing Natural Science Foundation(No.2204073).
文摘Molten salt is an excellent medium for chemical reaction,energy transfer,and storage.Molten salt innovative technologies should be developed to recover metals from secondary resources and reserve metals from primary natural sources.Among these technologies,molten salt electrolysis is an economic and environment-friendly method to extract metals from waste materials.From the perspective of molten salt characteristics,the application of molten salts in chemistry,electrochemistry,energy,and thermal storage should be comprehensively elaborated.This review discusses further directions for the research and development of molten salt electrolysis and their use for metal recovery from various metal wastes,such as magnet scrap,nuclear waste,and cemented carbide scrap.Attention is placed on the development of various electrolysis methods for different metal containing wastes,overcoming some problems in electrolytes,electrodes,and electrolytic cells.Special focus is given to future development directions for current associated processing obstacles.
基金Key R&D and transformation projects in Hebei Province,Grant/Award Number:21314401DProgram for the Development of Science and Technology of Jilin province,Grant/Award Numbers:20200201187JC,20200201277JC,20200201279JC+4 种基金Project of Development and Reform Commission of Jilin Province,Grant/Award Number:2020C026-3National Natural Science Foundation of China,Grant/Award Numbers:21978110,51772126,52171210Fundamental Research Funds for the Central Universities,Grant/Award Number:2021JCCXJD01Key R&D and transformation projects in Qinghai Province,Grant/Award Number:2021-HZ-808The talents project of Beijing Municipal Committee Organization Department,Grant/Award Number:2018000021223ZK21。
文摘Rational design of porous conductive hosts with high electrical conductivity,large surface area,and adequate interior space is desirable to suppressing dendritic lithium growth and accommodating large volume change of lithium metal anode during the Li plating/stripping process.However,due to the conductive nature of the conductive hosts,Li is easily deposited directly on the top of the hosts,which hinders it from fully functioning.To circumvent the issue,in this study,we designed a novel porous carbon host with a gradient-pore-size structure based on one-dimensional(1D)carbon with different diameters.With this kind of host,stable cycling with high and stable Coulombic efficiency of~98%is achieved at 0.5 mA cm^(−2) with an areal capacity of 1 mAh cm^(−2) over 320 cycles.In contrast,the normal three-dimensional(3D)carbon nanotube host presents a moss-like Li morphology with wildly fluctuating Coulombic efficiency after 100 cycles.The results reveal that the unique gradient-pore-size structure of the 3D conductive host greatly improves the performance of lithium metal batteries.
基金supported by the National Natural Science Foundation of China (Nos. 21978110 and 51772126)the Natural Science Foundation of Beijing (No. L182062)+8 种基金the Organization Department of Beijing Talents Project (2018000021223ZK21)the Yue Qi Young Scholar Project of China University of Mining & Technology (Beijing) (No. 2017QN17)the Fundamental Research Funds for the Central Universities (No. 2014QJ02)the Jilin Province Science and Technology Department Program (Nos. 20200201187JC, 20190201309JC, and 20190101009JH)the ‘‘13th five-year” Science and Technology Project of Jilin Provincial Education Department (No. JJKH20200407KJ)the Jilin Province Development and Reform Commission Program (Nos. 2020C026-3 and 2019C042-1)the Jilin Province Fund for Talent Development Program (No. [2019] 874)the supports from Natural Sciences and Engineering Research Council of Canada (NSERC), the University of Waterloothe Waterloo Institute for Nanotechnology。
文摘The notorious shuttle effect has long been obstructing lithium-sulfur(Li-S) batteries from yielding the expected high energy density and long lifespan.Herein,we develop a multifunctional polysulfide barrier reinforced by the graphitic carbon nitride/carbon nanotube(g-C_3 N_4/CNT) composite toward inhibited shuttling behavior and improved battery performance.The obtained g-C_3 N_4 delivers a unique spongelike architecture with massive ion transfer pathways and fully exposed active interfaces,while the abundant C-N heteroatomic structures impose strong chemical immobilization toward lithium polysulfides.Combined with the highly conductive agent,the g-C_3 N_4/CNT reinforced separator is endowed with great capability of confining and reutilizing the active sulfur within the cathode,thus contributing to an efficient and stable sulfur electrochemistry.Benefiting from these synergistic attributes,Li-S cells based on g-C_3 N_4/CNT separator exhibit an excellent cyclability with a minimum decay rate of 0.03% per cycle over 500 cycles and decent rate capability up to 2 C.Moreover,a high areal capacity of 7.69 mAh cm^(-2)can be achieved under a raised sulfur loading up to 10.1 mg cm^(-2).demonstrating a facile and efficient pathway toward superior Li-S batteries.
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Nos.21978110 and 51772126)the Natural Science Foundation of Beijing Municipal(No.L182062)+6 种基金the Talents Project of Beijing Municipal Committee Organization Department(No.2018000021223ZK21)the Yue Qi Young Scholar Project of China University of Mining&Technology(Beijing)(No.2017QN17)the Fundamental Research Funds for the Central Universities(No.2020XJJD01 and 2020YJSJD01)Jilin Province Science and Technology Department Program(Nos.20200201187JC and 20190101009JH)the"13th five‐year"Science and Technology Project of Jilin Provincial Education Department(No.JJKH20200407KJ)Jilin Province Development and Reform Commission Program(No.2020C026‐3)Jilin Province Fund for Talent Development Program(No.[2019]874).
文摘The flexible self-supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity,which meets the requirements of flexible batteries.Lithium-sulfur batteries(LSBs),as a new generation of energy storage system,hold much higher theoretical energy density than traditional batteries,and they have attracted extensive attention from both the academic and industrial communities.Selection of a proper substrate material is important for the flexible self-supporting electrode.Carbon materials,with the advantages of light weight,high conductivity,strong structural plasticity,and low cost,provide the electrode with a large loading space for the active material and a conductive network.This makes the carbon materials meet the mechanical and electrochemical requirements of flexible electrodes.In this paper,the commonly used fabrication methods and recent research progresses of the flexible self-supporting cathode with a carbon material as the substrate are introduced.Various sulfur loading methods are summarized,which provides useful information for the structural design of the cathode.As the first review article of the carbon-based flexible self-supporting LSB cathodes,it provides valuable guidance for the researchers working in the field of LSB.