The ITO/5T/PCH/Al1 device has a short circuit current of 3.4 mA/cm^2, an open circuit voltage of 2.1 V, fill fact of 27.5 % and photoelectric conversion efficiency of 2.5 %.
For the purpose of developing organic photovoltaic devices with good performance characteristics, we have fabricated two devices using 4T-CHO, 5T-CHO and PTCDA. The ITO/4T-CHO/PTCDA/Al device has a Voc of 2.45 V and p...For the purpose of developing organic photovoltaic devices with good performance characteristics, we have fabricated two devices using 4T-CHO, 5T-CHO and PTCDA. The ITO/4T-CHO/PTCDA/Al device has a Voc of 2.45 V and photoelectric conversion efficiency of 2.76%. The ITO/ST-CHO/PTCDA/Al device has a Voc of 2.1 3V and photoelectric conversion efficiency of 2.90%. The two devices have higher Voc (2.45 and 2.13 V). It is possible that intennolecular hydrogen bonding between -CHO group of nT-CHO and carboxylic dianhydride of PTCDA contribute to enhance the efficiency by promoting interracial electron transfer and eliminating the subconducting band trap sites.展开更多
For the purpose of developing flexible organic photovoltaic devices, we have fabricated two flexible devices using 5-formyl- 2,2′:5′,2″:5″,2′″-quaterthiophene (4T-CHO), 5-formyl-2,2′:5′, 2″:5″,2′″:...For the purpose of developing flexible organic photovoltaic devices, we have fabricated two flexible devices using 5-formyl- 2,2′:5′,2″:5″,2′″-quaterthiophene (4T-CHO), 5-formyl-2,2′:5′, 2″:5″,2′″:5′″,2″″-quinquethiophene (5T-CHO) and 3,4,9,10-perylenetertracarboxylic dianhydride (PTCDA). The PET-ITO/4T-CHO/PTCDA/A1 device has an open circuit voltage (Voc) of 1.56 V, photoelectric conversion efficiency of 0.77%. The PET-ITO/5T-CHO/PTCDA/A1 device has a Voc of 1.70 V, photoelectric conversion efficiency of 0.84%. The two flexible devices have high Voc (1.56 and 1.70 V). It is possible that intermolecular hydrogen bonding between -CHO group of nT-CHO and carboxylic dianhydride of PTCDA contributes to enhancing the efficiency by promoting interfacial electron transfer and eliminating the subconducting band trap sites.展开更多
基金Ministry of Education of the People's Republic of China (Research Funds for Chinese Scholars Returning from Abroad) the Ministry of Science and Technology of the People's Republic of China (National Key Program for Basic Research, 2001-CCA03500)+1 种基金 the Natural Science Foundation of Guangdong (No. 04105931) Guangzhou for financial support.
文摘The ITO/5T/PCH/Al1 device has a short circuit current of 3.4 mA/cm^2, an open circuit voltage of 2.1 V, fill fact of 27.5 % and photoelectric conversion efficiency of 2.5 %.
基金the Ministry of Science and Technology of China (National Key Program for Basic Research, No. 2001-CCA03500) NNSFC (Nos. 20674022 and 20534020)+1 种基金Science Foundation of Guangdong (Nos. 04105931 and 2006A10702003) Guangzhou (No. 2004J1-C0041) for financial support.
文摘For the purpose of developing organic photovoltaic devices with good performance characteristics, we have fabricated two devices using 4T-CHO, 5T-CHO and PTCDA. The ITO/4T-CHO/PTCDA/Al device has a Voc of 2.45 V and photoelectric conversion efficiency of 2.76%. The ITO/ST-CHO/PTCDA/Al device has a Voc of 2.1 3V and photoelectric conversion efficiency of 2.90%. The two devices have higher Voc (2.45 and 2.13 V). It is possible that intennolecular hydrogen bonding between -CHO group of nT-CHO and carboxylic dianhydride of PTCDA contribute to enhance the efficiency by promoting interracial electron transfer and eliminating the subconducting band trap sites.
基金supported by the Ministry of Science and Technology of China(National Key Program for Basic Research,No.2001-CCA03500)NSFC(Nos.20674022,20534020,and 20774031)+1 种基金the Natural Science Foundation of Guangdong(Nos.04105931 and 2006A10702003)Guangzhou(No.2004J1-C0041)for financial support.
文摘For the purpose of developing flexible organic photovoltaic devices, we have fabricated two flexible devices using 5-formyl- 2,2′:5′,2″:5″,2′″-quaterthiophene (4T-CHO), 5-formyl-2,2′:5′, 2″:5″,2′″:5′″,2″″-quinquethiophene (5T-CHO) and 3,4,9,10-perylenetertracarboxylic dianhydride (PTCDA). The PET-ITO/4T-CHO/PTCDA/A1 device has an open circuit voltage (Voc) of 1.56 V, photoelectric conversion efficiency of 0.77%. The PET-ITO/5T-CHO/PTCDA/A1 device has a Voc of 1.70 V, photoelectric conversion efficiency of 0.84%. The two flexible devices have high Voc (1.56 and 1.70 V). It is possible that intermolecular hydrogen bonding between -CHO group of nT-CHO and carboxylic dianhydride of PTCDA contributes to enhancing the efficiency by promoting interfacial electron transfer and eliminating the subconducting band trap sites.