期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Dynamically lithium-compensated polymer artificial SEI to assist highly stable lithium-rich manganese-based anode-free lithium metal batteries 被引量:1
1
作者 ming-ji peng Jin-Qiu Zhou +6 位作者 Ting-Ting Han Yang Zhou Jie Liu Na Xu Zhen-Kang Wang Wen-Bin Lin Cheng-Lin Yan 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2527-2535,共9页
Owing to the unique structure,anode-free lithium metal batteries(AFLMBs)have higher energy density and lower production cost than traditional lithium metal batteries(LMBs)or lithium-ion batteries(LIBs),However,AFLMBs ... Owing to the unique structure,anode-free lithium metal batteries(AFLMBs)have higher energy density and lower production cost than traditional lithium metal batteries(LMBs)or lithium-ion batteries(LIBs),However,AFLMBs suffer from an inherently finite Li reservoir and exhibit poor cycle stability,low Coulombic efficiency(CE)and severe dendrite growth.In this work,polydiallyl lithium disulfide(PDS-Li)was successfully synthesized and coated on Cu current collector by electrochemical polymerization.The PDS-Li acts as an additional lithium resource to compensate for the irreversible loss of lithium during cycling.In addition,the special structure and lithiophilicity of PDS-Li contribute to lower nucleation overpotential and uniform lithium deposition.When coupled with Li-rich manganese-based(LRM)cathode of Li1.2Mn0.54Ni0.13Co0.13O2,the anode-free full cell exhibits significantly improved cycle stability over 100 cycles and capacity retention of 63.3%and 57%after 80 and 100 cycles,respectively.We believe that PDS-Li can be used to ensure stable cycling performance and high-energy-density in AFLMBs. 展开更多
关键词 Anode-free Artificial solid electrolyte interphase(SEI) Lithium metal batteries Lithium-rich cathode Finite element simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部