The plasmonics Talbot effect in metallic layer with infinite periodic grooves is presented in this study. Numerical approach based on the finite element method is employed to verify the derived Talbot carpet on the no...The plasmonics Talbot effect in metallic layer with infinite periodic grooves is presented in this study. Numerical approach based on the finite element method is employed to verify the derived Talbot carpet on the non-illumination side. The groove depth is less than the metallic layer thickness; however, for specific conditions, surface plasmons polaritons(SPPs)can penetrate through grooves, propagate under the metallic layer, and form Talbot revivals. The geometrical parameters are specified via groove width, gap size, period, and wavelength, and their proper values are determined by introducing two opening ratio parameters. To quantitatively compare different Talbot carpets, we introduce new parameters such as R-square that characterizes the periodicity of Talbot images. The higher the R-square of a carpet, the more coincident with non-paraxial approximation the Talbot distance becomes. We believe that our results can help to understand the nature of SPPs and also contribute to exploring this phenomenon in Talbot-image-based applications, including imaging, optical systems, and measurements.展开更多
基金Project supported by the 111 Project,China(Grant No.D17021)the Changjiang Scholars and Innovative Research Team in University,China(Grant No.PCSIRT,IRT 16R07)
文摘The plasmonics Talbot effect in metallic layer with infinite periodic grooves is presented in this study. Numerical approach based on the finite element method is employed to verify the derived Talbot carpet on the non-illumination side. The groove depth is less than the metallic layer thickness; however, for specific conditions, surface plasmons polaritons(SPPs)can penetrate through grooves, propagate under the metallic layer, and form Talbot revivals. The geometrical parameters are specified via groove width, gap size, period, and wavelength, and their proper values are determined by introducing two opening ratio parameters. To quantitatively compare different Talbot carpets, we introduce new parameters such as R-square that characterizes the periodicity of Talbot images. The higher the R-square of a carpet, the more coincident with non-paraxial approximation the Talbot distance becomes. We believe that our results can help to understand the nature of SPPs and also contribute to exploring this phenomenon in Talbot-image-based applications, including imaging, optical systems, and measurements.