期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Trinity: Walking on a User-Object-Tag Heterogeneous Network for Personalised Recommendations 被引量:5
1
作者 ming-xin gan Lily Sun Rui Jiang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2016年第3期577-594,共18页
The rapid evolution of the Internet has been appealing for effective recommender systems to pinpoint useful information from online resources. Although historical rating data has been widely used as the most important... The rapid evolution of the Internet has been appealing for effective recommender systems to pinpoint useful information from online resources. Although historical rating data has been widely used as the most important information in recommendation methods, recent advancements have been demonstrating the improvement in recommendation performance with the incorporation of tag information. Furthermore, the availability of tag annotations has been well addressed by such fruitful online social tagging applications as CiteULike, MovieLens and BibSonomy, which allow users to express their preferences, upload resources and assign their own tags. Nevertheless, most existing tag-aware recommendation approaches model relationships among users, objects and tags using a tripartite graph, and hence overlook relationships within the same types of nodes. To overcome this limitation, we propose a novel approach, Trinity, to integrate historical data and tag information towards personalised recommendation. Trinity constructs a three-layered object-user-tag network that considers not only interconnections between different types of nodes but also relationships within the same types of nodes. Based on this heterogeneous network, Trinity adopts a random walk with restart model to assign the strength of associations to candidate objects, thereby providing a means of prioritizing the objects for a query user. We validate our approach via a series of large-scale 10-fold cross-validation experiments and evaluate its performance using three comprehensive criteria. Results show that our method outperforms several existing methods, including supervised random walk with restart, simulation of resource allocating processes, and traditional collaborative filtering. 展开更多
关键词 recommender system tag-aware recommendation random walk with restart heterogeneous network socialtag
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部