期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of lithium content on electrochemical property of Li_(1+x)(Mn_(0.6)Ni_(0.2)Co_(0.2))_(1-x)O_2(0≤x≤0.3) composite cathode materials for rechargeable lithium-ion batteries
1
作者 Cheng-chi PAN Ying-chang YANG +4 位作者 Hong-shuai HOU ming-jun jing Yi-rong ZHU Wei-xin SONG Xiao-bo JI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第1期145-150,共6页
In order to confirm the optimal Li content of Li-rich Mn-based cathode materials(a fixed mole ratio of Mn to Ni to Co is0.6:0.2:0.2),Li1+x(Mn0.6Ni0.2Co0.2)1-xO2(x=0,0.1,0.2,0.3)composites were obtained,which had a typ... In order to confirm the optimal Li content of Li-rich Mn-based cathode materials(a fixed mole ratio of Mn to Ni to Co is0.6:0.2:0.2),Li1+x(Mn0.6Ni0.2Co0.2)1-xO2(x=0,0.1,0.2,0.3)composites were obtained,which had a typical layered structure with R3m and C2/m space group observed from X-ray powder diffraction(XRD).Electron microscopy micrograph(SEM)reveals that the particle sizes in the range of0.4-1.1μm increase with an increase of x value.Li1.2(Mn0.6Ni0.2Co0.2)0.8O2sample delivers a larger initial discharge capacity of275.7mA·h/g at the current density of20mA/g in the potential range of2.0-4.8V,while Li1.1(Mn0.6Ni0.2Co0.2)0.9O2shows a better cycle performance with a capacity retention of93.8%at0.2C after50cycles,showing better reaction kinetics of lithium ion insertion and extraction. 展开更多
关键词 cathode material Li1+x(Mn0.6Ni0.2Co0.2)1-xO2 electrochemical property lithium-ion battery
下载PDF
Engineering sphere-like porous FeF3@C cathode with rational interfacial designing towards high-power batteries
2
作者 ming-jun jing Jun-Chang Liu +5 位作者 Shao-Hui Yuan Wen-Qing Zhao Min Liu Yan-Song Bai Peng Ge Tian-jing Wu 《Rare Metals》 SCIE EI CAS CSCD 2023年第3期954-970,共17页
Due to the high theoretical capacity and energy density,conversion-type metal fluorides have captured plenty of attentions but still suffer from the inferior kinetic behaviors and serious capacity fading.For addressin... Due to the high theoretical capacity and energy density,conversion-type metal fluorides have captured plenty of attentions but still suffer from the inferior kinetic behaviors and serious capacity fading.For addressing the issues above,the strategies of surface/interface engineering are utilized for the preparation of sphere-like porous FeF3@C materials,where the as-resulted sample displays the uniform particle size(~150 nm in radii)and the ultrathin carbon layers(thickness of~10 nm).Significantly,benefitting from the rich oxygen of precursor,the interfacial chemical bonds Fe-O-C are successfully constructed between carbon matrix and FeF3 materials,accompanying by the enhancements of ions/electrons(e-)conductivity and stability.When used as Li-storage cathodes,the initial lithium-ions storage capacity could reach up to~400mAh·g^(-1) at 0.1 A·g^(-1).Even at 1.0 A·g^(-1),the capacity could be still remained at about 210 mAh·g^(-1),with the retention of 85%after 400 cycles.Assisted by the detailed kinetic behaviors,the considerable electrochemical properties come from the enhanced diffusion-controlled contributions,whilst the segregation of Fe with LiF is effectively alleviated by unique architecture.Moreover,during cycling,solid electrolyte interface film is reversibly formed/decomposed.Thus,this work is expected to offer rational exterior/interfacial designing strategies for metalbased samples. 展开更多
关键词 Conversion-type Iron fluoride ELECTROCHEMISTRY Kinetic behaviors Secondary batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部